

HYDROGEOLOGICAL INVESTIGATION 150 CEMETERY ROAD UXBRIDGE, ONTARIO L9P 1R1

REPORT NO.: 5431W-20-HB REPORT DATE: August 7, 2024 REVISION NO.: 01

PREPARED FOR: CORAL CREEK HOMES 1 BROWNSCOMBE CRESCENT UXBRIDGE, ONTARIO L9P 1X9

110 KONRAD CRESCENT, UNIT 16, MARKHAM, ONTARIO L3R 9X2 TEL.: 905-940-8509 FAX: 905-940-8192

Table of Contents

1	Intro	ductior	1	1
	1.1	Project	Background	1
	1.2	Site De	escription	1
	1.3	Objecti	ives of the Hydrogeological Investigation	2
	1.4	Scope	of Work	
		1.4.1	Conceptual Understanding	
		1.4.2	Field Investigation	
		1.4.3	Data Analysis	
2			gulations and Policies	
3	_		eological and Hydrogeological Understanding	
	3.1		aphy and Drainage	
	3.2	•	graphy	
	3.3		al Geology	
	3.4		k Geology	
	3.5		jeology	
		3.5.1 3.5.2	Hydrostratigraphyu Groundwater Flow	
4	1			
4	Loca		gy and Hydrogeology	
	4.1 4.2		k	
	4.2 4.3		dwater Conditions	
	4.5	4.3.1	On-Site Monitoring Network	
		4.3.2	Groundwater Levels	
		4.3.3	Hydraulic Conductivity	
		4.3.4	Groundwater Flow	
		4.3.5	Groundwater Quality	
5	Dewa	atering	Estimates	15
6	Wate	r Balan	ce Analysis	16
	6.1	•	ed Water Balance Approach	
	6.2	Water	Balance Analysis Methodology	16
	6.3	Water	Balance Calculation	18
7	Phos	phorus	Balance Analysis	20
	7.1	Phospl	norus Balance Analysis Methodology	20
	7.2	Phospl	norus Balance Calculation	20
	7.3	Offsett	ing Compensation	21
8	Pote	ntial Re	ceptors and Impacts	21
	8.1	Potenti	al Receptors	21
		8.1.1	MECP Water Well Record Search	22

		8.1.2 Permitted Water Users	
		8.1.3 Ecological Receptors	
	8.2	Vulnerable Drinking Water Areas	
9	Imp	act Assessment and Mitigation	24
	-	Potential Short-Term Impacts	
		Potential Long-Term Impacts	
10	Sum	nmary	27
11	Refe	erences	29
12	Gen	neral Statement of Limitation	32

LIST OF TABLES

Table 4-1	Monitoring Well Construction Details	10
Table 4-2	Groundwater Levels (mbgs)	11
Table 4-3	Groundwater Elevations (masl)	
Table 4-4	Summary of Hydraulic Conductivity Calculations	
Table 4-5	Groundwater Quality Results	13
Table 6-1	Inputs to the Water Balance Analysis	18
Table 6-2	Water Balance Summary	18
Table 7-1	Phosphorus Balance Summary	
Table 8-1	Water Well Records within 500 m Buffer	22

LIST OF FIGURES

- Figure 1 Site Location
- Figure 2 Environmental Features
- Figure 3 Topography
- Figure 4 Physiography
- Figure 5 Surficial Geology
- Figure 6 Bedrock Geology
- Figure 7 Regional Hydrostratigraphic Cross-Section
- Figure 8 Borehole and Monitoring Well Locations
- Figure 9 Local Geological Cross-Section A-A'
- Figure 10 Groundwater Level Hydrograph
- Figure 11 Pre-Development Water Balance
- Figure 12 Post-Development Water Balance
- Figure 13 Pre-Development Phosphorus Balance
- Figure 14 Pre-Development Phosphorus Balance
- Figure 15 MECP Well Records & Permit to Take Water

LIST OF APPENDICES

- Appendix A Site Plan, Survey Plan and Civil Drawings
- Appendix B Borehole Logs
- Appendix C Hydraulic Conductivity Analysis
- Appendix D Groundwater Quality Certificate of Analysis
- Appendix E Water Balance Analysis
- Appendix F Phosphorus Balance Analysis
- Appendix G Water Well Records

1 Introduction

1.1 **Project Background**

Toronto Inspection Ltd. (TIL) was retained by Coral Creek Homes (the Client) to conduct a hydrogeological investigation for the property at 150 Cemetery Road in the Township of Uxbridge, Ontario (the Site). A residential subdivision development, approximately 0.88 ha in area, is proposed in the eastern portion of the Site which will include 23 townhouse units, 2 semi-detached units, a Street 'A' in a west-east direction, road widening west of Cemetery Road, and associated municipal servicing, including watermain, sanitary and storm sewers; the area is herein referred to as 'development area'. The remaining 3.49-ha area of the Site west of the development area will have no alteration and is proposed to be conveyed to the municipality. Existing structures that fall within the proposed development area will be demolished.

It is understood that the townhouses will be constructed with 1-level basements. Watermain and sanitary sewer will be constructed along the proposed Street 'A'. Details of the construction are provided in the civil plans prepared by Politis Engineering Ltd. (PEL) (**Appendix A**) which will be used for dewatering assessment as detailed in **Section 5**.

This hydrogeological investigation has been completed in accordance with Conservation Authority Guidelines for Development Applications – Hydrogeological Assessment Submissions dated June 2013.

The physical address of the Site is as follows:

150 Cemetery Road, Uxbridge, Ontario L9P 1R1 E 649314 N 4883866

The Site is owned by the Client. The relevant information for the Client contact is as follows:

1 Brownscombe Crescent, Uxbridge, Ontario L9P 1X9

1.2 Site Description

The Site is a 4.38-ha irregular shaped property located on the west side of Cemetery Road, approximately 250m north of Toronto Street South. The eastern quarter of the Site is a tableland, and the remaining three-quarters comprise a slope, a pond with a small creak and a densely treed floodplain. The proposed development will be built on the tableland.

At the time of the investigation, a two-storey house occupied the west side of the tableland, and was accessible by a driveway on the south side of the Site. An in-ground swimming pool was located to the north of the house and a tennis court was located to the east of the swimming pool. The remainder of the tableland was mostly vacant sodded area.

The location of the Site is shown in **Figure 1**. The Draft Plan of Subdivision prepared by Michael Smith Planning Consultants; Development Coordinators Ltd., dated February 6, 2024, illustrates the proposed boundaries and lots of the residential subdivision and is attached as **Appendix A**.

1.3 Objectives of the Hydrogeological Investigation

The report herein identifies regulations which may be relevant to the development of the Site from a groundwater perspective. The report also develops a conceptual understanding of the Site setting by characterizing the existing geological and hydrogeological conditions at the Site; including groundwater elevations, groundwater flow direction, hydraulic properties of soils and groundwater quality. Based on the conceptual understanding of the Site and proposed development, an evaluation is made of potential dewatering requirements during-construction and during occupancy in the long-term. As the Site is located within the Lake Simcoe Watershed, an impact assessment is provided along with options for mitigation concerning changes to the Site's water balance and phosphorus exports.

1.4 Scope of Work

1.4.1 Conceptual Understanding

A conceptual understanding of the regional and local geological and hydrogeological systems was developed through the review of existing reports and available geological and hydrogeological data. These included:

- Mapping and reports by the Lake Simcoe Region Conservation Authority (LSRCA);
- Geological information from the Ontario Geological Survey (OGS);
- Geological and hydrogeological data from the Oak Ridges Moraine Groundwater Program (ORMGP);
- Mapping from the Ontario Ministry of Natural Resources and Forestry (MNRF);
- Source water protection information for the Lake Simcoe Source and Couchiching-Black River Source Protection Region;
- Ministry of the Environment, Conservation, and Parks (MECP) Water Well Information System (WWIS) and Permit to Take Water (PTTW) database; and
- Geotechnical Investigation for 150 Cemetery Road, Uxbridge, ON prepared by TIL, dated January 12, 2021.

1.4.2 Field Investigation

Local Site conditions were characterized by TIL's 2021 geotechnical drilling program.

Boreholes were drilled at five on-Site locations in December 2020, to depths ranging from 6.55 m below ground surface to 12.65 mbgs. Four boreholes were completed as monitoring wells constructed of 0.051 m (2 inch) diameter polyvinyl chloride (PVC) riser pipe and 3.05 m (10 foot) long PVC slotted screens. All monitoring wells were installed with stick-up above ground and protected within monument casings. Monitoring wells were installed according to the relevant provisions of O.Reg. 903 by a licensed drilling contractor with TIL field staff in attendance. Monitoring wells were used to measure static groundwater levels, to conduct in-situ hydraulic conductivity testing and to collect representative groundwater quality samples.

Once it is determined that monitoring wells installed on the Site are no longer required, they should be decommissioned by a licensed well contractor as per O.Reg. 903.

1.4.3 Data Analysis

The data analysis component of this study will include the following items:

- Determination of soil stratigraphy and hydrostratigraphy;
- Determination of groundwater level elevations and seasonal variability;
- Determination of the hydraulic conductivity of soils;
- Assessment of groundwater quality;
- Evaluation of potential dewatering requirements during and after construction;
- Evaluation of water balance:
- Evaluation of phosphorus balance; and
- Evaluation of potential impacts to surrounding receptors within the anticipated dewatering and construction zones of influence.

2 Relevant Regulations and Policies

Environmental regulations and policies which may be relevant to the development of the Site and for which this investigation has been completed in accordance with are listed below and discussed briefly:

- Township of Uxbridge Official Plan Office Consolidation January 2014;
- Durham Region Official Plan Office Consolidation May 2020;
- Durham Region Sewer Use By-Law Number 55-2013;
- Ontario Regulation (O. Reg.) 41/24: Prohibited Activities, Exemptions and Permits;
- Lake Simcoe Protection Plan (2009);
- Ontario Water Resource Act (1990);
- O.Reg. 387/04: Water Taking and Transfer;
- The Clean Water Act (2006); and
- South Georgian Bay Lake Simcoe Source Protection Plan (2019).

Township of Uxbridge Official Plan

The Township of Uxbridge (Town) Official Plan identifies development and land-use objectives within the Town and conforms to Durham Region's Official Plan. Based on Official Plan mapping (Schedule 'A'), the Site is located within the Town's designated Urban Area where residential land uses are permitted. Moreover, to the west of the designated residential land use areas are designated Natural Hazard Areas within the Town Natural Heritage System and Natural Linkage Areas of the Oak Ridges Moraine Conservation Plan. The current development is proposed approximately 120 m to the east of the Natural Hazard Area boundary.

Durham Region Official Plan

The Durham Region Official Plan identifies development and land-use objectives for the longterm growth of Durham Region. Based on a review of the Official Plan maps (Schedule 'A-2'), the Site is located within designated Living Areas of the Region's Urban Area. Based on a review of Schedule 'B-2', the Site is also shown to be located with the Region's designated High Aquifer Vulnerability Areas and a Well Head Protection Area (WHPA-D) for Well #6 of the Uxbridge Drinking Water System.

Durham Region Sewer Use By-Law Number 55-2013

Durham Region, under the provisions and powers of *Sewer Use By-Law Number 55-2013*, is responsible for managing the discharge of private water to the Region's land drainage works or sewer systems. Any private water on the Site which will require discharge to the Region's sewer systems or to land drainage woks will require prior approval from Durham. Durham Region will review short-term and long-term discharge plans, discharge water quality, and estimated flows to determine if sewers can accommodate the proposed private water discharge flows.

O. Reg. 41/24: Prohibited Activities, Exemptions and Permits

Under Section 28, Part VI of the Conservation Authorities Act, local conservation authorities are mandated to protect the health and integrity of the regional greenspace system and to maintain or improve the hydrological and ecological functions performed by valley and stream corridors. The Site lies within the Lake Simcoe Region Conservation Authority (LSRCA) jurisdiction. The LSRCA is responsible for issuing permits under *O.Reg. 41/24: Prohibited Activities, Exemptions and Permits*, for development proposals within its corresponding regulated areas.

5431W-20-HB	Hydrogeological Investigation	Page 4 of 32
	150 Cemetery Road, Uxbridge, Ontario	

A review of LSRCA Regulation Maps (2024) shows that a portion of the area proposed for development falls within the regulated area. As such, consultation with LSRCA is recommended to determine whether a permit is required to proceed with the proposed works..

The LSRCA regulation limits and areas and features of the Town's and Region's Natural Heritage System are illustrated in **Figure 2**.

Lake Simcoe Protection Plan

The Lake Simcoe Protection Plan (LSPP), approved in July 2009, was prepared following the establishment of the Lake Simcoe Protection Act in 2008. The objective of the Lake Simcoe Protection Act and of the LSPP, is to safeguard the ecological health and function of Lake Simcoe and its tributaries. The LSPP requires applications for major development, i.e., developments with greater than 500 m² of impervious area, evaluate the potential losses in groundwater infiltration and increases in phosphorus loadings to Lake Simcoe, and how each will be mitigated. In accordance with the LSPP, the LSRCA requires the water and phosphorus balance analyses to meet the following targets:

- The water balance must demonstrate a net-zero change in pre-development infiltration volume. Compensation for an infiltration deficit is administered by the LSRCA under their *Water Balance Recharge Offsetting Policy* (LSRCA, 2023a); and
- The phosphorus balance must demonstrate compliance with the "Zero Export Target" for post-development phosphorus loadings. Compensation for surplus phosphorus loadings is administered by the LSRCA under their *Phosphorus Offsetting Policy* (LSRCA, 2023b).

Ontario Water Resource Act (1990)

Under Section 34 of the OWRA, a PTTW is required from the MECP for any water taking that is greater than 50,000 L/day. For construction site dewatering or road construction, water takings of more than 50,000 L/day but less than 400,000 L/day may be registered on the Environmental Activity and Sector Registry (EASR) under O.Reg. 63/16: *Registrations Under Part II.2 of the Act – Water Taking*. Water takings during construction that will exceed more than 400,000 L/day will require a PTTW issued by the MECP as will water takings post-construction that will exceed 50,000 L/day.

O.Reg. 387/04: Water Taking and Transfer Regulation

O.Reg. 387/04 under the OWRA outlines prohibited water taking and transfer activities, which must be evaluated by the MECP prior to issuing a PTTW or applicants who are self-registering on the EASR. The regulation also clarifies which activities are exempt from water taking permit requirements and outlines the data collection and reporting commitments for PTTW and EASR registration holders. Any water taking activity that is regulated by the OWRA will need to be undertaken in accordance with O.Reg. 387/04.

The Clean Water Act (2006)

The MECP mandates the protection of existing and future sources of drinking water under the Clean Water Act, 2006 (CWA). Initiatives under the CWA include the delineation of vulnerable areas for drinking water quality, i.e., Wellhead Protection Areas (WHPAs), Significant Groundwater Recharge Areas (SGRAs), Intake Protection Zones (IPZs) and Highly Vulnerable Aquifers (HVAs); and drinking water quantity, i.e., WHPA-Q1, WHPA-Q2 and IPZ-Q. Source

5431W-20-HB

Hydrogeological Investigation 150 Cemetery Road, Uxbridge, Ontario

Protection Plans were developed for all source protection regions in Ontario which outline the actual policies to be implemented by area municipalities in their development planning processes for the restriction, regulation, and prohibition of certain land use activities within vulnerable drinking water quality/quantity areas.

The Site is within the South Georgian Bay Lake Simcoe Source Protection Region and is subject to the source protection policies of the South Georgian Bay Lake Simcoe Source Protection Plan (SPP).

South Georgian Bay Lake Simcoe Source Protection Plan

Based on a review of the MECP Source Water Protection Information Atlas (MECP, 2024a), the Site is located within a WHPA-Q1, WHPA-Q2 and HVA areas. The Site is also shown to be partially within an IPZ-3 area for the Uxbridge Brook with a vulnerability score of 4.5, a WHPA-D, and an SGRA with a vulnerability score of 6 (MECP, 2024a).

Based on our review of the land-use policies of the SPP in context with the land uses activities proposed in the built-out condition of the Site, there are no restrictive land use policies under the SPP that are shown to apply, excepting LUP-12. Pursuant to LUP-12, proposals for major development shall maintain pre-existing annual groundwater recharge rates to the extent possible at the Site. A climate-based water balance was prepared to evaluate the Site's water balance and changes thereto, and is discussed later in this report.

The vulnerable drinking water areas of the SPP at and near the Site are presented in Figure 2.

3 Regional Geological and Hydrogeological Understanding

3.1 Topography and Drainage

Regional topography slopes from the topographic highest associated with the Oak Ridges Moraine to the south, to the topographic lows of the Lake Simcoe shoreline in the north. The proposed development area of the Site, the eastern portion, slopes towards the southeast from approximately 299 m above sea level (asl) to 294 masl, with an approximate average elevation of 295 masl. A steep slope exists to the west of the proposed development area dropping down to an approximate elevation of 287 masl and remains relatively flat towards the western Site boundary.

A topographic map of the Site and surrounding area is shown in **Figure 3**. The Survey Plan dated June 24, 2020, prepared by H. F. Grander Co. Ltd. provides 1 m contours and mapped stream and pond locations and is included in **Appendix A**.

The Site is located within the Pefferlaw-Uxbridge Brook Subwatershed located in the Lake Simcoe basin and has an approximate drainage area of 466.2 km². The subwatershed traverses a distance of approximately 77 km from its headwaters in the wetland areas of the southern flank of the Oak Ridges Moraine to its discharge into Lake Simcoe in the north (LSRCA, 2012).

A tributary of Uxbridge Brook intersects the Site at the foot of the slope and drains via the Uxbridge Brook to Pefferlaw River and ultimately to Lake Simcoe. The tributary traverses through the Uxbridge Brook Headwater Wetland Complex which extends from the south to the north through the western portion of the Site. The Uxbridge Brook Headwater Wetland Complex is a registered Provincially Significant Wetland (PSW) according to the Ontario Wetland Evaluation System (OWES). Based on the Pre-Development Storm Drainage Plan (PEL, 2021) presented in **Appendix A**, the western portion of the development area, approximately 0.24 ha in size, drains westerly towards the wetland. The remainder of development area is anticipated to drain to the east to Cemetery Road.

3.2 Physiography

The Site is located within the Oak Ridges Moraine (ORM) physiographic region. The ORM was deposited approximately 12,000 to 13,000 years B.P. and is a prominent geological feature within the subwatershed. The deposits of the ORM generally consist of layers of sand and gravel. (Chapman and Putnam, 1984). Off of the topographic highs of the ORM and within the subwatershed, the physiography of the ORM physiographic region is described as consisting of surficial sand and gravel deposits; however, select areas may be characterized by thick deposits of silt covered in places by a relatively thin layer of till (LSRCA, 2012).

A physiographic map of the Site and the surrounding area is presented in Figure 4.

3.3 Surficial Geology

Surficial geology mapping by the OGS (2010), indicates that the Site is located within three distinct areas. The eastern half of the Site is characterized by ice-contact stratified deposits, which include deposits of sand and gravel with minor deposits of silt, clay and till. Organic deposits and older alluvial deposits are located in the current floodplain of the wetland and extend to the western Site boundary.

The surficial geology at the Site and in the surrounding area per the OGS (2010) is presented in **Figure 5**.

3.4 Bedrock Geology

Regional geological mapping from the OGS (Armstrong and Dodge, 2007), indicates that shale bedrock of the Blue Mountain Formation underlies the overburden soils in this area. The top of bedrock elevation is at approximately 179 masl at the eastern boundary to 186 masl near the southwest corner (ORMGP, 2024).

The bedrock geology at the Site and in the surrounding area per the OGS is presented in **Figure 6**.

3.5 Hydrogeology

The current understanding of the regional hydrogeology is based on work completed by the York, Peel, Durham, Toronto and The Conservation Authorities Moraine Coalition (YPDT-CAMC) and made available through the ORMGP. The following discussion is based on information provided by Earthfx Inc. (2006) and the ORGMP (2024).

3.5.1 Hydrostratigraphyu

The following hydrostratigraphic units overlie the bedrock (from youngest to oldest) in the area of the Site:

- A. Recent Deposits
- B. Halton Till (Aquitard)
- C. Oak Ridges Moraine (Aquifer)
- D. Channel Sediments
- E. Newmarket Till (Aquitard)
- F. Thorncliffe Formation (Aquifer)
- G. Sunnybrook Drift (Aquitard)
- H. Scarborough Formation (Aquifer)

A conceptualization of the regional hydrostratigraphy through the subwatershed in a west-east direction is depicted in **Figure 7**. The cross-section illustrates the hydrostratigraphic profile through the subwatershed which was adopted for regional groundwater flow modelling studies in the subwatershed (Earthfx, 2006). The section is offset from the Site by approximately 1.5 km north. A description of each hydrostratigraphic unit depicted in **Figure 7** is provided below:

- **Recent Deposits** This unit consists of a thin veneer of glaciolacustrine deposits of fine sands, silts, and clays or modern alluvial or organic deposits. Locally, recent deposits can reach several meters thick; however, at the Site, this unit is interpreted to be present in limited amounts.
- **Halton Till** The Halton Till was deposited approximately 13,000 years before present (B.P.) during the last glacial advance in the area. The Halton Till is comprised of sandy silt till to clayey silt till. The Halton Till is not expected to be present at the Site.
- **Oak Ridges Moraine** The Oak Ridges Moraine Aquifer was deposited approximately 12,000 to 13,000 years B.P. Regionally, the aquifer is 160 km long and 5 to 20 km wide with a thickness of approximately 150 m. The unit consists of fine sands and silt

materials, with coarse sand and gravel occurring locally. Based on ORMGP mapping, the Oak Ridges Moraine Aquifer is expected to be encountered at approximately 290 masl (5 mbgs) at the proposed development area at the Site.

- Channel Sediments Following the deposition of the Newmarket Till (discussed below), glacial meltwaters created a series of erosional (tunnel) channels along the upper surface of the till unit. The meltwater fully eroded the till unit in some areas, and the tunnel channels that were left behind were infilled with silt and sand deposits as the energy of the meltwaters diminished. The silt and sand infill are referred to as the Channel Sand Aquifer and the Channel Silt Aquitard, respectively. Collectively, the units are referred to as the Channel Sediments. Based on ORMGP mapping, Channel Silts is expected to be encountered at approximately 283 masl (12 mbgs) and Chennel Sands is expected to be encountered at approximately 276 masl (19 mbgs) at the proposed development area at the Site.
- Newmarket Till The Newmarket Till was deposited by the Laurentide ice sheet approximately 18,000 to 20,000 years B.P. North of the ORM, the Newmarket Till has often been subdivided into three distinct units, they are the Upper Newmarket Till, the Inter-Newmarket Sediments, and the Lower Newmarket Till. The aquitard deposits of the Newmarket Till consist mainly of sandy silt to silty sand and locally reach thicknesses of approximately 20-30 m in the upper and lower parts of the aquitard. The Inter-Newmarket Sediments are characterized by coarse deposits of silt, sand and gravel. Based on ORMGP mapping, Lower Newmarket Till is expected to be encountered at approximately 263 masl (32 mbgs) at the proposed development area at the Site.
- Thorncliffe Formation The Thorncliffe Formation was deposited approximately 45,000 years B.P. and consists of glaciofluvial deposits of sand and silty sand. Regionally, it acts as an aquifer with variable grain size and thickness. Based on ORMGP mapping, the Thorncliffe Formation is estimated to be encountered at approximately 256 masl (39 mbgs) at the proposed development area at the Site.
- **Sunnybrook Drift** The Sunnybrook Drift was deposited approximately 45,000 years B.P. It is interpreted to be a silt and clay formation with a thickness of 10 m to 20 m, where present. Based on ORMGP mapping, the Sunnybrook Drift is expected to be present at the proposed development area at the Site at an approximate elevation of 217 masl (78 mbgs).
- Scarborough Formation The Scarborough Formation was deposited during the Wisconsin glaciation approximately 70,000 years to 90,000 years B.P. The Scarborough Formation is an aquifer of regional extent and it is interpreted to be a fluvial-deltaic system consisting of sand, silt, and clay deposits. The Scarborough Formation is estimated to be encountered at approximately 207 masl (88 mbgs) at the proposed development area at the Site.

3.5.2 Groundwater Flow

At a regional scale, groundwater flows through the subwatershed from the topographic highs associated with the Oak Ridges Moraine, south of the Site, towards Lake Simcoe in the north. Regional shallow groundwater flow will be influenced by variations in surficial geological materials which offer limited recharge potential, and by the many watercourses that meander within the subwatershed and which are supported by groundwater discharge.

4 Local Geology and Hydrogeology

The current understanding of the Site geology and hydrogeology is based on the geotechnical and hydrogeological investigations conducted by TIL in 2020.

4.1 Overburden

The overburden encountered during TIL's drilling program was as follows: disturbed soil up to a depth of 0.15 mbgs, followed by sand and silt textured deposits to the terminal depths of the investigation of 12.65 mbgs. The sand and silt textured deposits are described as silty sand, sandy silt, and sand in the borehole logs. The borehole logs included in TIL's geotechnical investigation are attached as **Appendix B**.

4.2 Bedrock

Bedrock was not encountered at the terminal depth of 12.65 mbgs. Bedrock is expected to be encountered at approximately 180 masl (~115 mbgs).

4.3 Groundwater Conditions

4.3.1 On-Site Monitoring Network

The location of the monitoring well included in the current investigation are illustrated together with static water level elevations from a monitoring event on January 5, 2021, in plan view and in a west-east oriented cross-section in **Figure 8** and **Figure 9**, respectively. A summary of the monitoring well construction details is provided in **Table 4-1**.

Well ID	Ground Elevation	Screen Interval	Well Diameter	Screen Length	Screened Unit
	(masl)	(mbgs / masl)	(m)	(m)	
20BH-1(MW)	296.20	9.25 - 12.30 /286.95 - 283.90	0.051	3.048	Sand / Sandy Silt
20BH-3(MW)	295.95	3.05 - 6.10 / 292.90 - 289.85	0.051	3.048	Silty Sand
20BH-4(MW)	299.00	3.05 - 6.10 / 295.95 - 292.90	0.051	3.048	Sandy Silty / Silty Sand
20BH-5(MW)	296.30	3.05 - 6.10 / 293.25 - 290.20	0.051	3.048	Silty Sand / Sand

 Table 4-1
 Monitoring Well Construction Details

4.3.2 Groundwater Levels

A summary of long-term water level measurements is presented in **Table 4-2** in mbgs and **Table 4-3** in masl, respectively. **Figure 10** is a hydrograph showing the manual and continuous groundwater level data along with daily precipitation from the nearest Environment Canada and Climate Change Station. Groundwater level measurements are presented for December of 2020 to June of 2021.

Based on monitoring results, the shallow monitoring wells at the Site, including 20BH-3(MW), 20BH-4(MW) and 20BH-5(MW), were reported as dry in all cases and have therefore not intersected the groundwater table at the Site in their area of installation. Groundwater elevations from the single deep monitoring well, 20BH-1(MW), were measured throughout the monitoring period ranging from 284.16 masl on June 17, 2021, to 284.36 masl on May 14, 2021.

Well ID	Screen Interval (mbgs)	07- Dec- 20	05- Jan- 21	12- Jan- 21	12- Mar- 21	15- Apr- 21	06- May- 21	14- May- 21	17- Jun- 21
20BH-1 (MW)	9.2 - 12.25	11.92	11.88	11.89	11.92	11.85	11.86	11.84	12.04
20BH-3 (MW)	3.1 - 6.15	dry							
20BH-4 (MW)	3.1 - 6.15	dry							
20BH-5 (MW)	3.1 - 6.15	dry							

Table 4-2 Groundwater Levels (mbgs)

Note – water levels measured from existing ground surface

Table 4-3	Groundwater Elevations	(masl)	
		(

Well ID	Screen Interval (masl)	07- Dec- 20	05- Jan- 21	12- Jan- 21	12- Mar- 21	15- Apr- 21	06- May- 21	14- May- 21	17- Jun- 21
20BH-1 (MW)	287 - 283.95	284.28	284.32	284.31	284.28	284.35	284.34	284.36	284.16
20BH-3 (MW)	292.85 - 289.8	dry							
20BH-4 (MW)	295.9 - 292.85	dry							
20BH-5 (MW)	293.2 - 290.15	dry							

4.3.3 Hydraulic Conductivity

Due to dry or otherwise low water column conditions in the monitoring wells, in-situ single well response testing could not be completed for inclusion in the current report. Instead, an estimate of the hydraulic conductivity of underlying soils was prepared using the Hazen (1911) method with grainsize analyses from samples collected on-Site.

The Hazen (1911) method provides an estimate of the isotropic permeability of the fine-grained fraction (D10) of a disturbed soil sample. Originally applied in groundwater studies for estimating permeabilities of clean sands, the results of this analysis can be used to estimate permeabilities for other materials as well, recognizing that the results may not be representative of in-situ conditions for all soil types and potentially representative of only a localized volume of soil.

The corresponding analyses are presented in **Appendix C**. A summary of hydraulic conductivities is presented in **Table 4-4**.

Well/Borehole ID	Borehole Depth Analyzed (mbgs)	Material Tested	Hazen Method K (m/s)
20BH-1(MW)	9.1	Sand	2.9 x 10 ⁻⁶
20BH-3(MW)	1.5	Silt	4.4 x 10 ⁻⁷
20BH-5(MW)	2.3	Sandy Silt	6.8 x 10 ⁻⁷

Table 4-4 Summary of Hydraulic Conductivity Calculations

The results of the laboratory testing showed that the hydraulic conductivity ranged between 4.4 x 10^{-7} and 2.9 x 10^{-6} m/s for the depths tested. The range in reported results falls within the expected range of hydraulic conductivity for sand, silt, and sandy silt materials, which is generally between 10^{-6} to 10^{-12} m/s (Freeze and Cherry, 1979).

4.3.4 Groundwater Flow

Locally, groundwater is anticipated to be influenced by the presence of surface water features of the Uxbridge Brook, which transects the Site at the base of the slope. Based on the topographic relief observed towards the pond and the understanding of local hydrostratigraphy and regional drainage patterns, it is anticipated that a portion of groundwater flow will converge locally at the Uxbridge Brook on-Site.

4.3.5 Groundwater Quality

Unfiltered groundwater quality samples were collected from 20BH-1(MW) on January 5, 2021. Subsequent samples were collected on January 12, 15, and 29, 2021, due to low water levels and slow water level recovery rates in order to complete sampling for the full suite of parameters. The collected samples were sent to SGS Environmental Services (SGS), in Lakefield, Ontario for analysis. The sample results are compared to Durham Region By-Law Number 55-2013, Table 1 – Limits for Sanitary Sewer Discharge and Table 2 – Limits for Storm Sewer Discharge in **Table 4-5**. The laboratory certificates of analyses are provided in **Appendix D**.

Based on laboratory analyses, the groundwater quality meets the discharge criteria for *Table 1* sanitary sewer limits of the Durham Region By-Law Number 55-2013, except for TSS. However, considering the conditions under which the well was sampled, it is anticipated that the elevated concentration of TSS is not representative of raw groundwater quality but rather of sediment suspended in the water column during sampling. With regard to the Table 2 storm sewer limits of the Durham Region By-Law Number 55-2013, analytical water quality results suggest that manganese (total), phosphorus (total), zinc (total) and Total Kjeldahl Nitrogen are present in the groundwater in concentrations above the discharge criteria.

Sample ID	Units cfu/100mL	Durham By-law 55-2013 Table 1 (Sanitary) Limit	Durham By-law 55-2013 Table 2 (Storm) Limit 200	RL	20BH- 1(MW)
pH	no unit	6.0-10.5	6.0-9.0	0.05	7.37**
Biochemical Oxygen Demand (BOD5)	mg/L	300	15	2	<4**
Total Suspended Solids	mg/L	350	15	2	616**
Fluoride	mg/L	10		0.06	< 0.06
Cyanide (total)	mg/L	2	0.02	0.01	< 0.01
Total Kjeldahl Nitrogen	as N mg/L	100	1	0.5	2.5*
4AAP-Phenolics	mg/L	1	0.008	0.002	<0.002*
Sulphate	mg/L	1500		2	5
Oil & Grease (animal/vegetable)	mg/L	150		4	NA
Oil & Grease (mineral/synthetic)	mg/L	15		4	NA
Mercury (total)	mg/L	0.01	0.0004	0.00001	<0.00001
Aluminum (total)	mg/L	50		0.001	10.9
Antimony (total)	mg/L	5		0.0009	<0.0009
Arsenic (total)	mg/L	1	0.02	0.0002	0.0036
Cadmium (total)	mg/L	0.7	0.008	0.000003	0.000135
Chromium (total)	mg/L	2	0.08	0.00008	0.0210
Copper (total)	mg/L	3	0.05	0.0002	0.0236
Cobalt (total)	mg/L	5		0.000004	0.00913
Lead (total)	mg/L	1	0.12	0.00001	0.0113
Manganese (total)	mg/L	5	0.15	0.00001	0.954
Molybdenum (total)	mg/L	5		0.00004	0.00320
Nickel (total)	mg/L	3	0.08	0.0001	0.0196
Phosphorus (total)	mg/L	10	0.4	0.003	0.613
Selenium (total)	mg/L	1	0.02	0.00004	0.00013
Silver (total)	mg/L	5	0.12	0.00005	<0.00005
Tin (total)	mg/L	5		0.02	0.0102
Titanium (total)	mg/L	5		0.00005	0.476
Zinc (total)	mg/L	2	0.04	0.002	0.055
Polychlorinated Biphenyls (PCBs) - Total	mg/L	0.001	0.0004	0.0001	NA
Benzene	mg/L	0.01	0.002	0.0005	<0.0005
Chloroform	mg/L	0.04	0.002	0.0005	<0.0005
1,2-Dichlorobenzene	mg/L	0.05	0.0056	0.0005	<0.0005
1,4-Dichlorobenzene	mg/L	0.08	0.0068	0.0005	<0.0005

Table 4-5 Groundwater Quality Results

cis-1,2-Dichloroethene	mg/L	4	0.0056	0.0005	<0.0005
trans-1,3-Dichloropropene	mg/L	0.14	0.0056	0.0005	<0.0005
Ethylbenzene	mg/L	0.16	0.002	0.0005	<0.0005
Methylene Chloride	mg/L	2	0.0052	0.0005	<0.0005
1,1,2,2-Tetrachloroethane	mg/L	1.4	0.017	0.0005	<0.0005
Methyl ethyl ketone	mg/L	8		0.02	<0.02
Styrene	mg/L	0.2		0.0005	<0.0005
Tetrachloroethylene (perchloroethylene)	mg/L	1	0.0044	0.0005	<0.0005
Toluene	mg/L	0.27	0.002	0.0005	<0.0005
Trichloroethylene	mg/L	0.4	0.008	0.0005	<0.0005
Xylene (total)	mg/L	1.4	0.0044	0.0005	<0.0005
di-n-Butyl Phthalate	mg/L	0.08	0.015	0.002	NA
Bis(2-ethylhexyl)phthalate	mg/L	0.012	0.0088	0.002	NA
Nonylphenol	mg/L	0.02		0.001	NA
Nonylphenol Ethoxylates	mg/L	0.2		0.01	NA

Notes:

- 1. RL: the laboratory reportable limit for the analysis
- 2. Yellow shaded cells indicate an exceedance of Durham Region By-Law 55-2013, Table 2 criteria.
- 3. Red shaded cells indicate an exceedance of both Table 1 and Table 2 criteria.
- 4. *Sample January 12, 2021
- 5. ** Sample January 15, 2021
- 6. NA indicates sample results not available at time of writing

5 Dewatering Estimates

Construction details are obtained from the civil drawings (PEL, 2021) as provided in **Appendix A**. Based on a review of the drawings, the townhouses are each to have a basement foundation ranging from 297.11 masl to 293.99 masl. Additionally, the deepest excavtion required for servicing is expected at approximately 288.8 masl during installation of MH2 of the storm sewer proposed along Street 'A'.

Based on the results of long-term monitoring program highest groundwater level observed on-site of 284.36 masl on May 14, 2021, at 20BH-1(MW); therefore, there is anticipated to be no requirement for dewatering during construction or in Site occupancy at this time.

Should substantial changes occur in the engineering plans for the Site prior to construction suggest a groundwater table is present within the anticipated depth of excavation during construction, the conclusions made concerning the potential need for groundwater dewatering should be re-evaluated.

6 Water Balance Analysis

6.1 **Proposed Water Balance Approach**

The water balance analysed the area to the east of the top-of-bank where alterations to the Site will occur and where construction of the townhouses will take place, herein referred to as the development area. It does not include the area to the west of the development area as it is understood that no alterations will be made to this area and it will be severed into a single lot under the Plan of Subdivision and sold. There are anticipated to be no changes to the water balance for the areas west of the development area.

The development area was sub-divided into pervious and impervious catchment areas based on the existing and proposed land cover as illustrated in the Draft Plan of Subdivision that was referenced in this report and which is provided in **Appendix A**. The current water balance analysis evaluates the impact of urbanization on current conditions and highlights a potential infiltration deficit which shall require mitigation to comply with the water balance requirements of the regulatory documents listed in **Section 2**. A LID system is proposed by PEL to mitigation the potential water balance deficit at the Site. The LID design details are obtained from the Functional Servicing & Preliminary Stormwater Management Report (PEL, 2024) and used in this water balance analysis.

Details of the water balance analysis are presented in **Appendix E**. The pre-development and post-development catchment areas are illustrated in **Figure 11** and **Figure 12**, respectively

6.2 Water Balance Analysis Methodology

A water balance analysis was prepared using the Thornthwaite and Mather (1957) water balance method outlined in *Chapter 3 of the MOECC's SWM Planning and Design Manual* (MOECC, 2003) and the *Technical Guidelines for Stormwater Management Submissions* (LSRCA, 2022). The water balance method accounts for evapotranspiration, infiltration, and runoff volumes based on soil types, vegetation cover, topography, and precipitation for pre-development and post-development conditions.

The water balance equation represents an accounting system for the quantity and distribution of water within a given area. The water balance equation tracks all inputs and outputs of the system and is represented as follows:

P = R + I + ET

where:

P is total precipitation*R* is the total runoff*I* is the total infiltration*ET* is the potential evapotranspiration

The total precipitation and other pertinent climatic details for the water balance can be obtained from a single meteorological station using the nearest neighbour approach. The Udora climate station (ID# 6119055), located south of Ravenshoe Road and east of Lakeridge Road in Udora, ON, is the closest meteorological station to the Site at approximately 19 km to the north. Data collected from this station over 30-year intervals is hosted by Environment Canada as Climate Normals and represents the average of all climate variables which are relevant to the water

5431W-20-HB

Hydrogeological Investigation 150 Cemetery Road, Uxbridge, Ontario

balance calculation. Therefore, the Climate Normals data from the Udora climate station, for the period from 1981 to 2010, were obtained from Environment Canada and used in the water balance analysis.

The water surplus (R+I) is the amount of water available in a given month to infiltrate, runoff, or recharge. The individual components of water surplus, runoff, and infiltration were determined using a set of infiltration factors. The infiltration factors depend on the land topography, the soil type, and the land cover of an area. The infiltration factors are multiplied by the estimated annual water surplus to determine the components of runoff and infiltration within each catchment. For this water balance analysis, the percentage of precipitation lost to evapotranspiration from impervious surfaces was considered to be 5% suggested by PEL (2024). Additionally, given the fact that the runoff from the building rooftop and paved areas is drained to the predominant landscaped area of the development area and then infiltrated for the predevelopment scenario, a 25% infiltration rate was assigned to all impervious areas.

The Thornthwaite Equation (1948) was used to estimate the monthly potential evapotranspiration and is based on the average length of a day in a month, the average number of days in that month, and the average daily temperature in that month and is adjusted using a daylight correction factor to account for varying lengths of daylight throughout the year.

The pre-development and post-development conditions for the water balance have the Site subdivided into the following discrete catchment areas:

Pre-development:

- S1: Landscaped Area
- S2: Paved Area
- S3: Building Area

Post-development:

- S1: Landscaped Area
- S2: Paved Area
- S3: Building Area

With respect to the development area, the existing ground cover consists of a driveway servicing an existing dwelling, as well as sodded areas and amenities associated with the existing dwelling. The pre-development area is currently occupied by one residential dwelling and associated driveway as well as associated accessory buildings and amenities. In the pre-development scenario, the impervious percentage for S1 – Landscaped Area is assumed to be 0% while the S2 – Paved Area is assumed to be 100% and S3 – Building Area is also assumed to 100%. In total, the pre-development scenario had an impervious land area percentage of 11%.

In the post-development scenario, the impervious percentage for S1 – Landscaped Area is assumed to be 0%, and the S2 – Paved Area and S3 – Building Area are each assumed to have an impervious percentage of 100%. In total, the post-development scenario had an impervious land area percentage of 47%.

Infiltration factors for various land cover, topographic slope and soil types are provided in Table 3.1 of MOE (2003). Factors were chosen from among these based on the site-specific conditions. A summary of the summed infiltration factors used in this water balance is presented in **Table 6-1**.

5431W-20-HB	Hydrogeological Investigation
	150 Cemetery Road, Uxbridge, Ontario

Ar	ea ID		Area (m²)	MOECC Infiltration Factors	Runoff Factors
Pre-Development	S1	Grass Area	7,902	0.5	0.5
	S2	Paved Area	737	0	0.95*
	S3	Building Area	231	0	0.95*
Post-Development	S1	Grass Area	4,733	0.5	0.5
	S2	Paved Area	1,826	0	0.95*
	S3	Building Area	2,311	0	0.95*

Table 6-1 Inputs to the Water Balance Analysis

Notes:

1. * 5% lost to evapotranspiration on impervious surfaces per civil design (PEL, 2024)

6.3 Water Balance Calculation

Pre- and Post-Development Without Mitigation

Based on the water balance calculations for the pre-development conditions, infiltration represents 16% of the total precipitation, runoff represents 24% of the total precipitation and evapotranspiration represents 60% of the total precipitation. The estimated pre-development annual infiltration rate for the proposed development area is approximately 1,233 m³/year.

The post-development water balance without mitigation showed an increase in surface runoff and reductions in evapotranspiration and infiltration due to an increase in impervious area. In the post-development scenario, infiltration represents 9% of the total precipitation, runoff represents 53% of the total precipitation, and evapotranspiration represents 38% of the total precipitation. Based on the water balance analysis, the estimated overall infiltration rate in the post-development scenario without mitigation is approximately 696 m³/year. The corresponding post-development infiltration deficit, assuming no mitigation, is approximately 537 m³/year, which represents a negative change of 44% from pre-development infiltration.

A summary of the results of the water balance analysis is provided in Table 6-2.

Scenario	Total Infiltration (m³/yr)	Total Runoff (m ³ /yr)	Total Evapotranspiration (m³/yr)	Total Infiltration Deficit (m ³ /yr)
Pre-Development	1,047	1,726	4,290	0
Post-Development (without mitigation)	557	4,212	2,295	490

Table 6-2 Water Balance Summary

Drainage Towards Wetland

Based on a review of the Pre- and Post-Development Storm Drainage Plans (PEL, 2021), a 0.24ha area in the western portion of the development area (Area A in **Figure 11**) currently drains towards the wetland to the west, and the same area (Area D in **Figure 12**) with a slightly larger size of 0.26 ha will maintain the same drainage pattern in the post-construction condition. A water balance assessment was conducted for this drainage area in both pre- and post-construction

conditions to determine whether there is a loss of hydraulic input to the wetland after the development. Details of this water balance analysis are presented in **Appendix E**

Area A in the pre-development scenario consists of approximately 1,730 m² pervious land and 620 m² impervious land. Based on the water balance analysis, the area in the pre-development scenario has an estimated infiltration rate of approximately 254 m³/year, and a runoff rate of approximately 776 m³/year, which results in a total annual hydraulic contribution of 1,031 m³/year.

Area D in the post-development scenario consists of approximately 2,038 m² pervious land and 545 m² impervious land. The LIDs proposed in this area include soakaway pits and infiltration trenches associated with building block 1, 5 and 6. Given the 25 mm retention capacity of the LID system and the size details provided by PEL (2024), it is calculated that an infiltration rate of approximately 175 m³/year will be accelerated by soakaway pits from stormwater captured from roof area, and an additional 389 m³/year of infiltration will be achieved by infiltration trenches from direct landscape drainage. Based on the water balance analysis with LID mitigation, the area in the post-development scenario has an estimated infiltration rate of approximately 555 m³/year, and a runoff rate of approximately 504 m³/year, which results in a total annual hydraulic contribution of 1,058 m³/year. Therefore, no net loss of hydraulic input to the wetland is anticipated for the proposed development.

7 Phosphorus Balance Analysis

7.1 Phosphorus Balance Analysis Methodology

A phosphorus balance analysis was prepared using the *Phosphorus Budget Tool in Support of Sustainable Development for the Lake Simcoe Watershed* (the Tool) (Hutchinson et al., 2012). The Tool, which can be used to estimate phosphorus loadings for development applications in the Lake Simcoe Watershed, was developed in response to a "no net increase" in phosphorus target initiated by the establishment of the LSPP policy 4.8-DPe. The target for this phosphorus balance, and for the design of stormwater treatment at the Site, will be to ensure that the post-development total phosphorus export does not exceed the pre-development levels in accordance with the requirements of the LSRCA's *Phosphorus Offsetting Policy* (LSRCA, 2023b).

The Tool provides a standardized approach across all subwatersheds for estimating the phosphorus loading from stormwater runoff in pre-development and post-development scenarios for new developments in the Lake Simcoe Watershed. The Tool uses an Export Coefficient Modelling approach to facilitate direct evaluation and comparison of phosphorus loadings between pre-development and post-development stages of development.

The Export Coefficient Modelling approach is based on the idea that the physical characteristics and land uses for a property dictate, and can be associated with known quantities of phosphorus loads or "exports" which have been pre-determined by extensive literature review in the development of the Tool. The phosphorus loading equation used in the pre-development and post-development scenarios is represented as follows:

$$L = \sum E_i \times A_i$$

Where:

- *L* is the total estimated phosphorus loading in kg/yr;
- E_i is the export coefficient for land use *i*, and
- A_i is the area over which land use *i* applies.

7.2 Phosphorus Balance Calculation

Pre- and Post-Development Without Mitigation

The inputs to the Tool include land-uses and corresponding phosphorus export coefficients, which are prescribed in the Tool for the Pefferlaw-Uxbridge Brook and are outlined in the accompanying documentation for the Tool in *Table 1. Description of Berger (2010) Land Uses in the Lake Simcoe Watershed* and *Table 2. Land-Use Specific Phosphorus Export Coefficients (kg/ha/yr) for Lake Simcoe Subwatersheds*, respectively.

The Site was assigned a land-use classification of Low-Intensity (Residential) in the predevelopment condition, and High-Intensity Development (Residential) in the post-development condition.

Based on the outputs of the Tool for the phosphorus balance analysis, the pre-development scenario had a phosphorus loading of 0.12 kg/year, and the post-development scenario without mitigation had a phosphorus loading of 1.17 kg/year.

A summary of the phosphorus balance analysis is provided in **Table 7-1**. The phosphorus balance analysis is presented in **Appendix F**. The pre-development and post-development land uses for the phosphorus balance are illustrated in **Figure 13** and **Figure 14**, respectively.

Scenario	Land Use	Area	Export Coefficient (kg/ha/yr)	Total Residual Phosphorus Loading (kg/yr)
Pre-Development	Low Intensity Development	0.887	0.13	0.12
Post-Development (without mitigation)	High Intensity Development	0.887	1.32	1.17

 Table 7-1
 Phosphorus Balance Summary

Post-Development With Mitigation

The post-development phosphorus loading, considering the implementation of the proposed LID system as the mitigation measures, was assessed by PEL as part of their Functional Servicing & Preliminary Stormwater Management Report (2024). As per Section 5.6 of their report, the post-development phosphorus loading with mitigation is estimated to be 0.74 kg/year.

7.3 Offsetting Compensation

An increase of 0.62 kg/year of phosphorus loading in the post-development condition, with mitigation measures applied, was estimated compared to the pre-development level. As per Phosphorus Offsetting Policy (LSRCA, 2023b), a phosphorus offsetting fee will be required to be provided to LSRCA if no further mitigation is to be provided at the Site. The offsetting fee can be estimated following the below equation:

Offsetting Fee

= P load increase × 2.5 (offset ratio) × \$35,7702.5 (offset value) × 1.15 (administration fee)

A total offsetting fee of \$63,760.03 was calculated in the case of the proposed development. A detailed phosphorus offsetting fee calculation sheet is provided in **Appendix F**.

8 Potential Receptors and Impacts

8.1 **Potential Receptors**

As part of this program, potential groundwater receptors including domestic or permitted water supplies were identified. Additionally, the surrounding area was evaluated for potential ecological receptors to construction activities including dewatering.

An understanding of typical groundwater usage in the area was obtained by:

 Querying MECP Water Well Information System (WWIS) (2024b) within a 500 m radius of the Site;

- Querying MECP PTTW records (2024c) within a 500 m radius of the Site; and
- Reviewing the MNRF (2024) Natural Heritage Areas mapping portal to identify potential ecological receptors within a 500 m radius of the Site.

8.1.1 MECP Water Well Record Search

A search of the MECP (2024b) WWIS was conducted within a 500 m radius of the Site boundary. The search results returned a total of 76 well records within the search area. The Site and surrounding areas have municipal water supplies available for use. However, the rural residential properties along Cemetery Road are anticipated to be serviced by private groundwater wells.

Well usage details are summarized in **Table 8-1**. **Appendix G** provides the list of MECP water well records returned by the search. **Figure 15** shows the location of MECP water well records within the 500 m search radius.

Well Use	Number of Wells within 500 m Buffer of Study Area	Percentage of Total
Water Supply – Domestic	30	39%
Water Supply – Commercial	6	8%
Water Supply – Industrial	2	3%
Water Supply – Livestock	1	1%
Monitoring (Test Hole/ Observation)	25	33%
Abandoned	9	12%
Unknown	3	4%
Total	76	100%

Table 8-1 Water Well Records within 500 m Buffer

Water supply wells comprise 51% of all well records found within a 500 m buffer of the Site, including 39% for domestic supply. The records show that these wells were installed between 1961 and 2020 and, considering surrounding rural residential land uses, are presumed to be active. The municipal water supply in Uxbridge is also sourced from groundwater. The nearest municipal well, Well #6, is located approximately 1.1 km to the northeast and is screened at approximately 58.2 mbgs. Municipal water is available near the Site; however, the lots on Cemetery Road are not observed to be connected.

8.1.2 Permitted Water Users

A search was conducted of the MECP (2024c) PTTW database to identify the permitted groundwater takers within 500 m of the Site boundary. There are no active groundwater PTTWs currently identified within the search area.

8.1.3 Ecological Receptors

Based on a review of MNRF's Natural Heritage Areas mapping portal (MNRF, 2024), the Site is not located within 500 m of Areas of Natural Scientific Interest (ANSI); however, a tributary of the Uxbridge Brook intersects the Site. The Site is bordered by woodlands and the Uxbridge Brook Headwater Wetland Complex, a designated PSW in Ontario. Development is anticipated to occur

5431W-20-HB	Hydrogeological Investigation	Page 22 of 32
	150 Cemetery Road, Uxbridge, Ontario	

approximately 100 m from the approximate delineated area of the PSW (MNRF, 2024). It is our understanding that the western portion of the proposed development area will drain towards the wetland, and based on the water balance results presented in **Section 6**, no loss of hydraulic inputs to the wetland is anticipated in the post-development condition. It is understood that an Environmental Impact Study (EIS) is required to evaluate the habitat and sensitive receptors associated with the PSW (LSRCA, 2021). The Site is not known to be within an Ecologically Significant Groundwater Recharge Area (ESGRA). Based on reverse particle tracking analyses, the PSWs in the subwatershed have an estimated travel time for recharge of approximately 10 years (LSRCA, 2012). These initial conclusions should be confirmed following the EIS.

A map of the ecological receptors was presented in Figure 2.

8.2 Vulnerable Drinking Water Areas

Based on a review of the source water protection mapping, the proposed development is located within a WHPA-D area associated with Uxbridge Drinking Water System Well #6 as well as within an SGRA and designated WHPA-Q1 and WHPA-Q2 areas and HVA areas. The vulnerable drinking water areas were presented in **Figure 3**.

As the Site is located within a Recharge Management Area (WHPA-Q2) and SGRA, it will be necessary to demonstrate that there will be no significant reductions to groundwater recharge that may impact drinking water quantity.

9 Impact Assessment and Mitigation

9.1 Potential Short-Term Impacts

Groundwater System

Impacts to the groundwater system during construction can include a temporary lowering of the groundwater table during construction dewatering or the introduction of contamination to the groundwater system through a reduction in ground cover and exposed native soils nearer to the groundwater table which are susceptible to dry and wet weather spills. Based on the current findings of this investigation, no groundwater dewatering is anticipated during construction. However, construction Site's may store potential sources of contamination in the short-term and the release of these to the exposed ground can contribute to groundwater contamination.

A Spill Prevention and Response Plan is recommended during construction to mitigate potential spills and it is recommended that potentially hazardous materials be stored in designated areas with appropriate containment as well as away from areas of high vehicle traffic. Assuming protocols are in place for managing construction related sources of groundwater contamination, no short-term impacts to the groundwater system are anticipated.

Surface Water System

Short-term impacts to the surface water system include changes in the hydrologic regime caused by land grading changes or the deposition of sediment, hazardous materials, or other deleterious substances into waterbodies and watercourses. As the development area is adjacent to a slope which drains into an existing pond as well as a PSW, mitigation of potential impacts to the surface water system is warranted during construction.

Potential impacts are anticipated to be effectively mitigated where a Site-specific Spill Prevention and Response Plan as well as an Erosion and Sediment Control (ESC) Plan are in place. Routine monitoring of ESC measures will ensure the form and function of these controls in preventing off-Site impacts to the sensitive surface water system adjacent to the Site. No unacceptable impacts to the surface water system during construction are anticipated.

Other Groundwater Users

Impacts to other groundwater users include impacts to both the quantity and quality of groundwater available to private water supplies as well as permitted groundwater takers through the reduction in recharge or introduction of contamination to the water supply aquifer.

In the short-term, no groundwater takings within the development area are proposed nor are unacceptable losses to groundwater recharge anticipated. Therefore, no impacts to the quantity of groundwater available are anticipated. Impacts from contamination are expected to mitigable where a Spill Prevention and Response Plan is in place and protocols for the storage and use of potential sources of contamination are followed. Correspondingly, no unacceptable impacts to other groundwater users during construction are expected.

9.2 Potential Long-Term Impacts

Groundwater System

Long-term impacts to the groundwater system include reductions in annual recharge which have a compounding effect on groundwater levels as well as from land-uses where high-risk activities are proposed, including, for example, industrial and commercial areas where hazardous materials may be stored/used, where hazardous waste is generated, and where significant quantities of road salt are used for winter ice management.

Based on the results of the water balance analysis, it is anticipated that an infiltration deficit will be realized following construction due to the increase in impervious area. However, with the implementation of the proposed LID system, it is expected that the infiltration deficit can be effectively mitigated.

The development area will be occupied for high-density residential purposes, which, as it concerns the groundwater system, is generally associated with low-risk activities. As the Site is nearby a municipal well, it is recommended that "Smart About Salt" contractors and best management practices related to de-icing and snow management are used as part of the long-term occupancy of the Site.

Based on the current findings of this investigation, no unacceptable impacts to the groundwater system which cannot be mitigated are anticipated.

Surface Water System

Potential long-term impacts to the surface water system can include reductions in the catchments which are tributary to the system as well as reductions in groundwater recharge where the groundwater contributes baseflow in the system or supports ecologically sensitive habitats in the system.

It is our understanding that the western portion of the proposed development area will drain towards the wetland, and based on the water balance results presented in **Section 6**, no loss of hydraulic inputs to the wetland is anticipated in the post-development condition. Further, the Site is not known to be within an ESGRA. As a result of the foregoing, unacceptable long-term impacts to the surface water system with respect to the quantity of inputs to the system are not expected. These initial conclusions should be confirmed following the EIS.

Based on the current findings of the phosphorus balance analysis, there will be a surplus in phosphorus loadings from the Site following development. The phosphorus surplus is expected to be mitigated through LID treatment proposed at the Site, as well as by paying the offsetting fee to the LSRCA. As per Section 4.4.4 of the Phosphorus Offsetting Policy (LSRCA, 2023), the revenue generated from the offsetting will be used to reduce the phosphorus loading from other parts of the subwatershed through construction of best management practices. Therefore, no overall increase in phosphorus loading to the subwatershed is expected, nor are there anticipated long-term impacts of phosphorus surplus generated at the Site on the nearby surface water system.

Potential Long-Term Impacts to Other Groundwater Users

As no long-term water takings from local water supply aquifers are required in the long-term and no reductions in groundwater recharge to the local water supply aquifers are expected following

5431W-20-HB Hydrogeological Investigation		Page 25 of 32
	150 Cemetery Road, Uxbridge, Ontario	

the implementation of LIDs, no unacceptable long-term impacts to other groundwater users identified in this investigation are expected.

10 Summary

A summary of the hydrogeological investigation, completed in support of the proposed development at 150 Cemetery Road, Uxbridge, Ontario, is included below:

- The Site falls within the Lake Simcoe and Couchiching/Black River Source Protection Area. Vulnerable drinking water areas at the Site and in the near surrounding area include WHPA-Q1 and WHPA-Q2, a WHPA-D area, an SGRA, an HVA area and an IPZ-3 area.
- The Site is located within the Pefferlaw-Uxbridge Brook Subwatershed of the Lake Simcoe Watershed, which is under the jurisdiction of the LSRCA. The Site is partially located in an LSRCA regulated area. A permit from the LSRCA will be required for construction in these areas.
- A Provincially Significant Wetland associated with the Uxbridge Brook Headwater Wetland Complex is located to the west and within 120 m of the development. A tributary of Uxbridge Brook traverses through the wetland area in a south to north direction and there is an existing natural pond adjacent to the wetland as well. The wetland is not anticipated to receive significant inputs from infiltration or runoff within the development area. It is understood that an EIS will be completed and therefore the findings from that study should be consulted for potential connectivity of the development area to the wetland or corresponding options for mitigation of potential impacts.
- The proposed development area of the Site slopes towards the southeast from approximately 299 masl to 294 masl. A steep slope exists to the west of the proposed development area dropping down to an approximate elevation of 287 masl and remains relatively flat towards the western Site boundary.
- The Site is situated in the Oak Ridges Moraine (ORM) physiographic region. In the area of the Site, this physiographic region is characterized by a thick deposit of silt overlain by a relatively thin layer of glacial till sediments.
- The overburden material consists of soil up to a depth of 0.15 mbgs, followed by sand and silt textured deposits to the terminal depth of investigation, 12.65 mbgs. The sand and silt textured deposits are described as silty sand, sandy silt, and sand.
- Groundwater levels were monitored at the Site between December of 2020 to June of 2021. Based on the results, groundwater in the development area was encountered only in the deep well (12.65 mbgs) with water levels ranging from 284.16 masl to 284.36 masl.
- Based on the estimates of hydraulic conductivity using the results of grain-size analysis from samples collected in the field, the hydraulic conductivity of the sand and silt textured overburden is anticipated to range between 10⁻⁷ and 10⁻⁶ m/s.
- Based on laboratory analyses, the groundwater quality meets the discharge criteria for *Table 1 sanitary sewer limits* of the *Durham Region By-Law Number 55-2013*, except TSS. However, considering the conditions under which the well was sampled, it is anticipated that the elevated concentration of TSS is not representative of raw groundwater quality but rather of sediment suspended in the water column activated

during sampling. Concerning the *Table 2 storm sewer limits* of the *Durham Region By-Law Number 55-*2013, analytical water quality results suggest that manganese (total), phosphorus (total), zinc (total) and Total Kjeldahl Nitrogen are present in the groundwater in concentrations above the discharge criteria.

- Based on the measured groundwater levels and the anticipated depths of excavations required for construction, dewatering of groundwater is not anticipated in the short-term or in the long-term.
- The water balance analysis presented in this report determined a potential postdevelopment infiltration deficit of approximately 537 m³/year, without mitigation. Based on the design details provided by PEL, the proposed LID system is expected to effectively mitigate the infiltration deficit.
- A phosphorus balance analysis presented in this report determined a potential predevelopment phosphorus loading of 0.12 kg/year, and a post-development phosphorus loading of approximately 1.17 kg/year, without mitigation. PEL estimated a phosphorus loading of 0.74 kg/year in the post-development condition with the implementation of LID system. The remaining phosphorus surplus of 0.62 kg/year is expected to be compensated through paying the offsetting fee of approximately \$63,760.03 to LSRCA.
- A review of the MECP WWIS for the area within a 500 m radius of the Site identified a total of 76 records for water supply of some kind, including 30 for domestic water supply. The records for domestic water supply wells suggest that the wells were installed between 1961 and 2020 and, considering surrounding rural residential land uses, they are presumed to be active.
- A site-specific Spill Prevention and Response Plan, as well as a site-specific ESC Plan, are recommended during construction. Where well designed and implemented environmental management plans are in place, unacceptable short-term impacts to the environment are not expected.
- Potential long-term impacts to the groundwater system and surface water system identified in this investigation are anticipated to be mitigated following the implementation of LIDs designed to infiltrate and treat stormwater runoff from the Site. Potential long-term impacts of phosphorus surplus generated at the Site on the surface water system is also expected to be mitigated through offsetting compensation with the LSRCA. Therefore, unacceptable long-term impacts to the groundwater system and surface water system are not expected following development.

11 References

- Armstrong, D.K. and J.E.P. Dodge. 2007. Paleozoic Geology of Southern Ontario. Ontario Geological Survey, Miscellaneous Release Data 219.
- Cashman, P.M. and Preene, M. 2013. Groundwater Lowering In Construction: A Practical Guide to Dewatering, 2nd Edition. CRC Press, New York, New York.
- Chapman, L.J. and Putnam, D.F. 1984. The Physiography of Southern Ontario, Third Edition. Ontario Geological Survey, Ontario Ministry of Natural Resources.
- Earthfx Inc. 2014. Final Report Tier 3 Water Budget and Local Area Risk Assessment for the Region of York Municipal Systems Risk Assessment Report. July 2014.
- Environmental and Climate Change Canada. 2024. Historical Data. Udora Climate Station (ID 6119055). Daily Data Report for December 2023 Climate Environment and Climate Change Canada (weather.gc.ca). Accessed on July 30, 2024.
- Freeze, R.A. and J.A. Cherry.1979. Groundwater. New Jersey: Prentice-Hall, Inc.
- Hazen, A. 1911. Discussion-dams of sand foundations: Transactions, American Society of Civil Engineers, v. 73, p 199-203.
- Hvorslev, M.J. 1951. Time Lag and Soil Permeability In Groundwater Observations. Bulletin No. 36 Waterways Experiment Station, Corps of Engineers, U.S. Army, Vicksburg Mississippi. April 1951.
- Hutchinson Environmental Sciences Ltd., Greenland International Consulting Ltd., and Stoney Associates Inc. 2012. Phosphorus Budget Tool in Support of Sustainable Development for the Lake Simcoe Watershed, March 30, 2012.
- Lake Simcoe Region Conservation Authority (LSRCA). 2012. Pefferlaw River Subwatershed Plan.
- Lake Simcoe Region Conservation Authority. (LSRCA). 2013. Hydrogeological Assessment Submission. Conservation Authority Guidelines for Development Applications, June 2013.
- Lake Simcoe Region Conservation Authority (LSRCA). 2021. Ecological Offsetting Plocy, July 2021.
- Lake Simcoe Region Conservation Authority (LSRCA). 2022. Technical Guidelines for Stormwater Management Submissions, April 2022.
- Lake Simcoe Region Conservation Authority. (LSRCA). 2024. Regulation Maps, Ontario Regulation 41/24. https://lsrca.on.ca/index.php/regulation-maps/ Accessed July 11, 2024.
- Lake Simcoe Region Conservation Authority. (LSRCA). 2023a. Water Balance Recharges Offsetting Policy. May 1, 2023.
- Lake Simcoe Region Conservation Authority (LSRCA). 2023b. Phosphorus Offsetting Policy. May 2023.
- South Georgian Bay-Lake Simcoe (SGBLS) Source Protection Committee (SPC). 2015. Approved Assessment Report: Lake Simcoe and Couchiching-Black River Source Protection Area, Part 1, January 19, 2015.

- Ministry of the Environment (MOE). 2003. Stormwater Management Planning and Design Manual, March 2003.
- Ministry of the Environment, Conservation, and Parks (MECP). 2024a. Source Protection Information Atlas. https://geohub.lio.gov.on.ca/datasets/source-protection-information-atlas Last Updated April 19, 2024. Accessed July 25, 2024.
- Ministry of the Environment, Conservation, and Parks (MECP). 2024b. Water Well Information System. January 1, 1889 to June 30, 2023. Last Updated January 31, 2024. https://data.ontario.ca/dataset/well-records Accessed June 16, 2024.
- Ministry of the Environment, Conservation, and Parks (MECP). 2024c. Permit to Take Water Database. January 1, 1960 to January 1, 2024. Last Updated January 9, 2024. https://data.ontario.ca/dataset/permit-to-take-water Accessed June 16, 2024.
- Ministry of Natural Resources and Forestry (MNRF). 2024. Natural Heritage Areas Mapping Portal. https://geohub.lio.gov.on.ca/datasets/make-a-map-natural-heritage-areas Updated April 9, 2024. Accessed July 30, 2024.
- Morris, D.A., and Johnson, A.I. 1967. Summary of Hydrologic and Physical Properties of Rock and Soil Materials, as Analyzed by the Hydrologic Laboratory of the U.S. Geological Survey 1948-60. Geological Survey Water-Supply Paper 1839-D.
- Oak Ridges Moraine Groundwater Program (ORMGP). 2024. ORMGP Consolidated Mapping (oakridgeswater.ca). Accessed on July 25, 2024.
- Ontario Geological Survey (OGS). 2010. Surficial geology of Southern Ontario; Ontario Geological Survey. Ontario Geological Survey, Miscellaneous Release--Data 128-REV.
- Powers, J.P; A.B. Corwin; P.C. Schmall, and Kaeck, W.E. 2007. Construction Dewatering and Groundwater Control: New Methods and Applications Third Edition. New York, New York: John Wiley & Sons.
- Politis Engineering Ltd. (PEL). 2021. DWG No.101: Preliminary General Services Plan. DWG No.102: Pre-Development Storm Drainage Plan. DWG No.103: Post-Development Storm Drainage Plan. DWG No.201: Street 'A' Plan & Profile. DWG No.301: Preliminary Grading Plan. DWG No. 302: LID Systems Plan. DWG No.303: LID Systems – Notes & Details Plan. Dated December 2021.
- Politis Engineering Ltd. (PEL). 2024. Functional Servicing & Preliminary Stormwater Management Report for 150 Cemetery Road, Township of Uxbridge. January 2022. Revised May 21, 2024.
- Powrie, W., and Preene, M. 1994. Performance of ejectors in construction dewatering systems. Proceedings of the Institution of Civil Engineers, Geotechnical Engineering No. 107: 143– 154.
- Regional Municipality of Durham Official Plan Office Consolidation May 2020
- South Georgian Bay Lake Simcoe Source Protection Region (SGBLS-SPR). 2019. (SGBLS-SPR, 2015). Approved Source Georgian Bay Lake Simcoe Source Protection Plan. Approved January 26, 2015.
- Thornthwaite, C. W. 1948. An approach toward a rational classification of climate.

Geographical Review. 38 (1): 55–94.

Toronto Inspection Ltd. 2021. Report on Geotechnical Investigation for 150 Cemetery Road, Uxbridge dated January 12, 2021

Town of Uxbridge. 2019. Uxbridge Drinking Water System 2019 Annual Water Quality report

Town of Uxbridge Official Plan – Office Consolidation January 2014

York, Peel, Durham, Toronto and The Conservation Authorities Moraine Coalition (YPDT-CAMC). 2006. Groundwater Modelling of the Oak Ridges Moraine Area. CAMC-YPDT Technical Report # 01-06. Prepared by Earthfx Inc.

12 General Statement of Limitation

The comments presented in this report are based on the soil and groundwater samples gathered from the borehole/monitoring well locations indicated on the plan of this report. There is no warranty expressed or implied or representations made by Toronto Inspection Ltd. that this program has discovered all potential environmental risks or liabilities associated with the subject site.

Although we consider this report to be representative of the subsurface conditions at the subject property in the areas investigated, any interpretation of factual data or unexpected soil conditions which exhibit noticeable discolouration, odour, etc. in areas not investigated in this report, should be discussed in consultation with us prior to any initiation of activity. Our responsibility is limited to an accurate assessment of the soil condition prevailing at the locations investigated at the time of the study.

To the fullest extent permitted by law, the client's maximum aggregate recovery against Toronto Inspection Ltd., its directors, employees, sub-contractors and representatives, for any and all claims by Coral Creek Homes for all causes including, but not limited to, claims of breach of contract, breach of warranty and/or negligence, shall be the amount of fees paid to Toronto Inspection Ltd. for its professional engineering services rendered with respect to the particular site which is the subject of the claim by the client.

Any use and/or interpretation of the data presented in this report, and any decisions made on it by the third party are responsibility of the third party. Toronto Inspection Ltd. accepts no responsibility for loss of time and damages, if any, suffered by the third party as a result of decisions or actions based on this report.

Any legal actions arising directly or indirectly from this work and/or Toronto Inspection Ltd.'s performance of the services shall be filed no longer than two years from the date of Toronto Inspection Ltd.'s substantial completion of the services. Toronto Inspection Ltd. shall not be responsible to the client for lost revenues, loss of profits, cost of content, claims of customers, or other special indirect, consequential, or punitive damages.

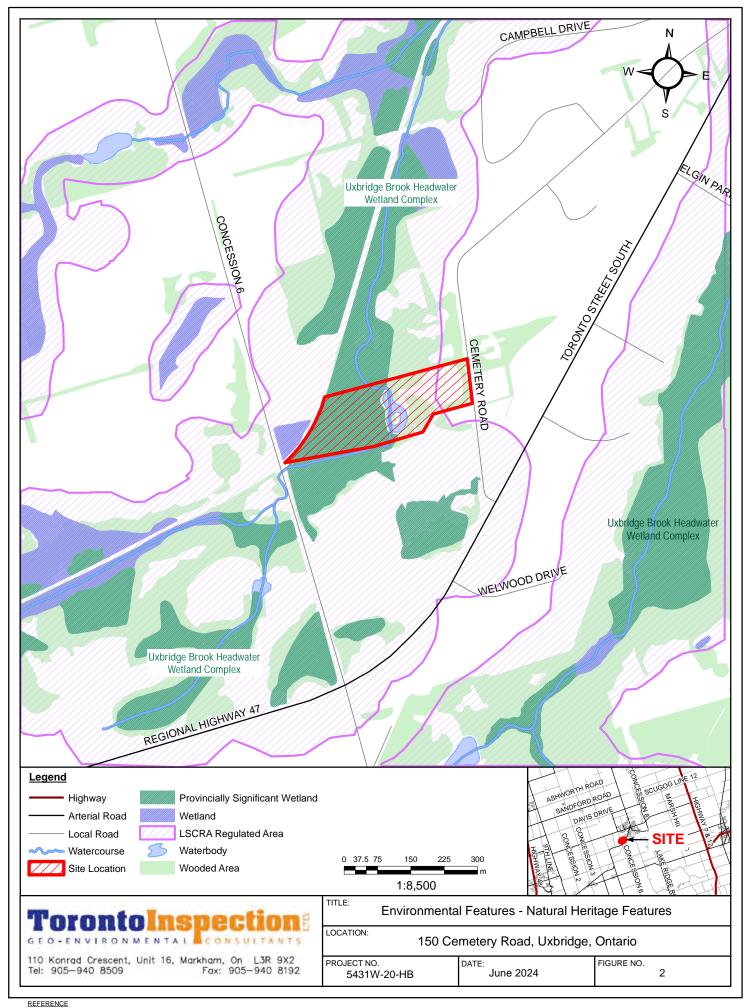
Yours truly,

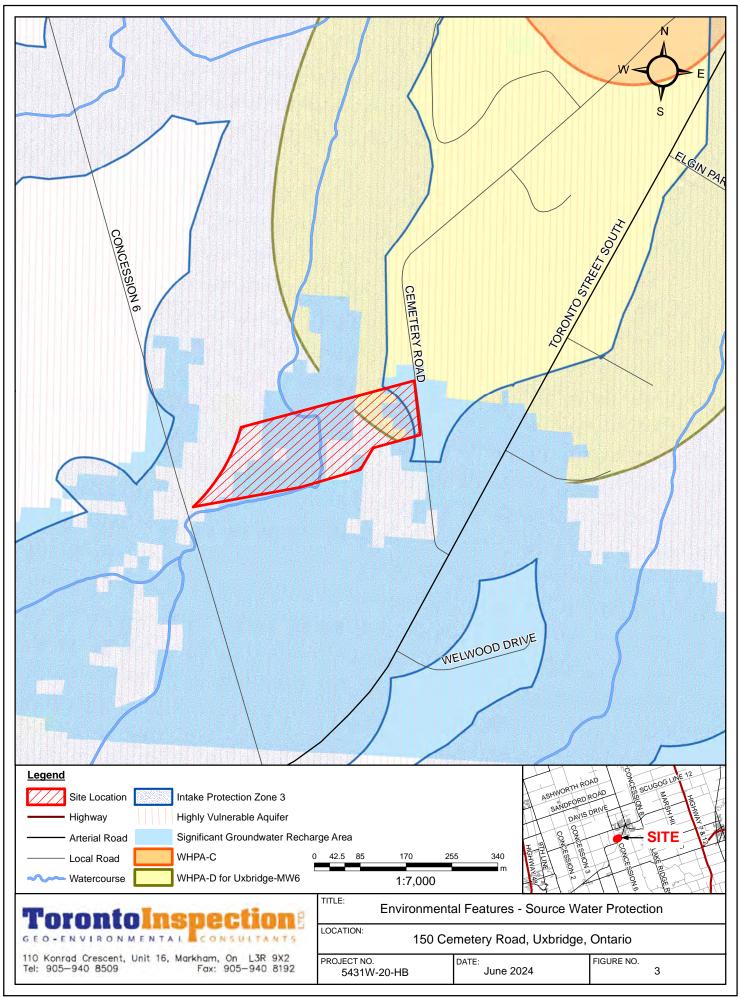
Toronto Inspection Ltd.

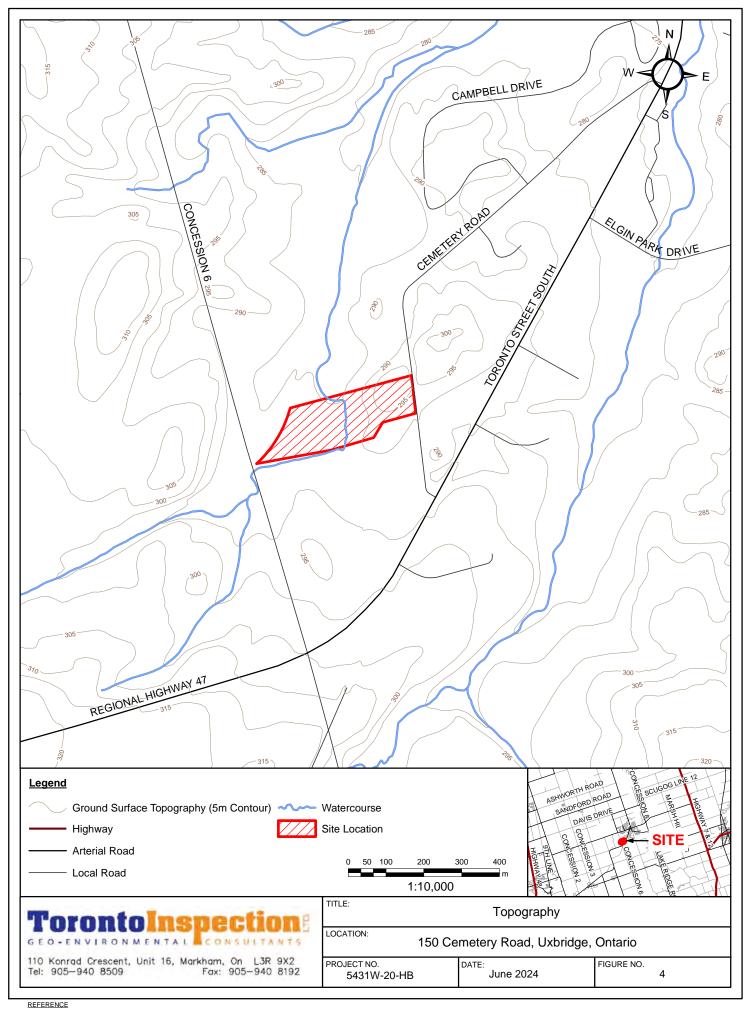
Tabitha Lee, M.A.Sc., P.Eng.. Senior Hydrogeologist

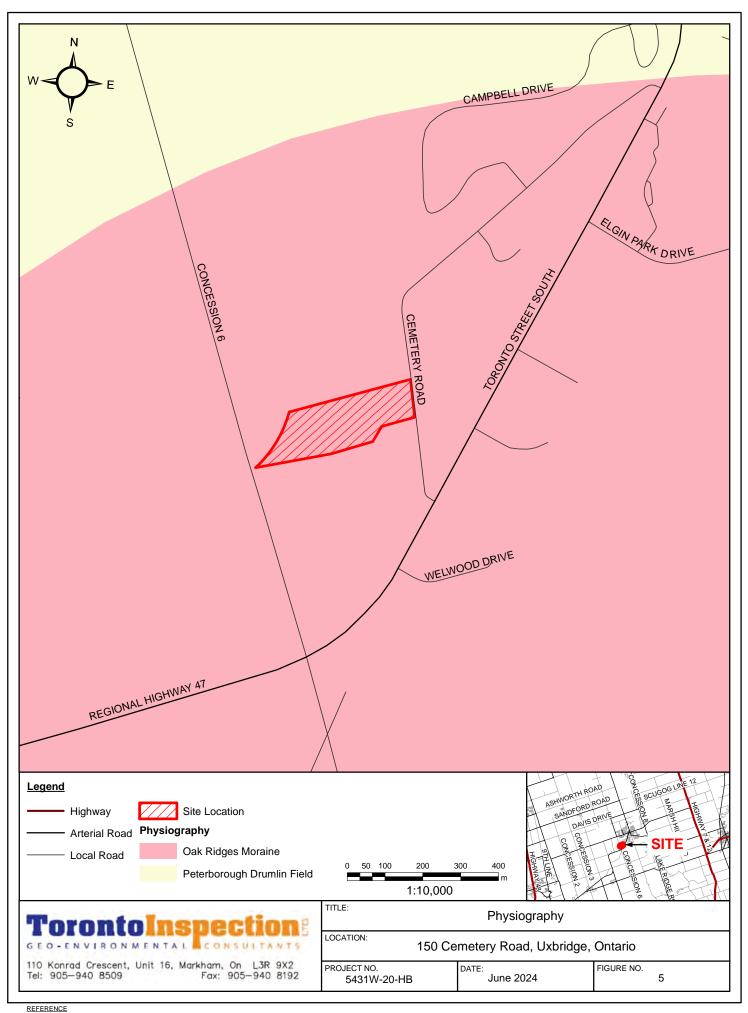
Sanjay Goel, B.E.S. Environmental Scientist Vice-President

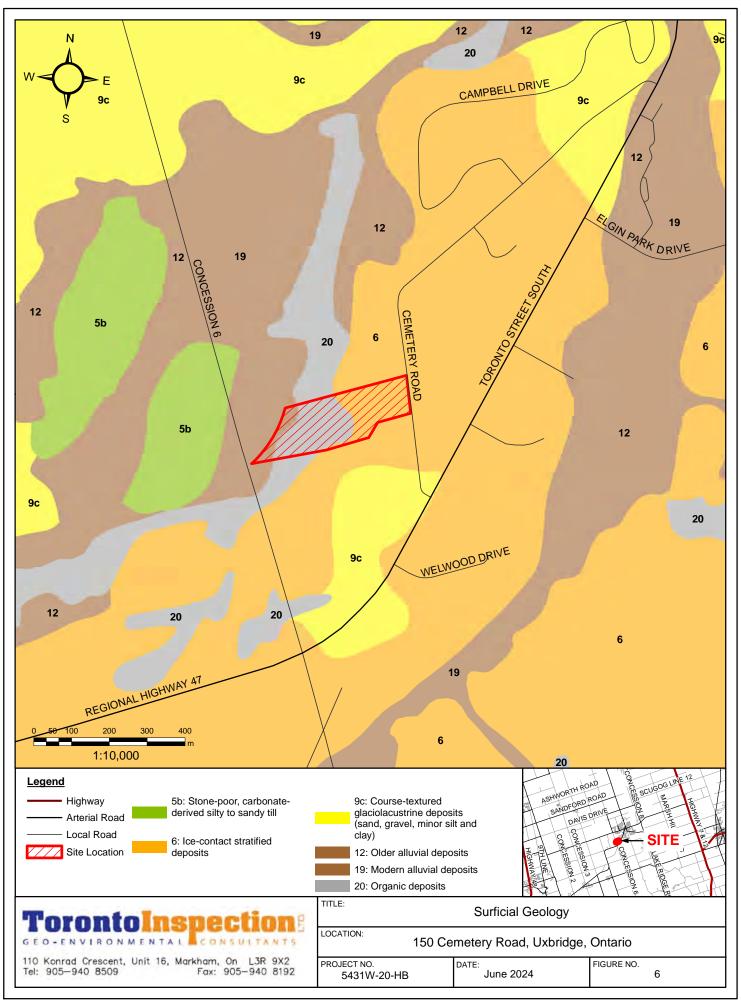
5431W-20-HB


Hydrogeological Investigation 150 Cemetery Road, Uxbridge, Ontario

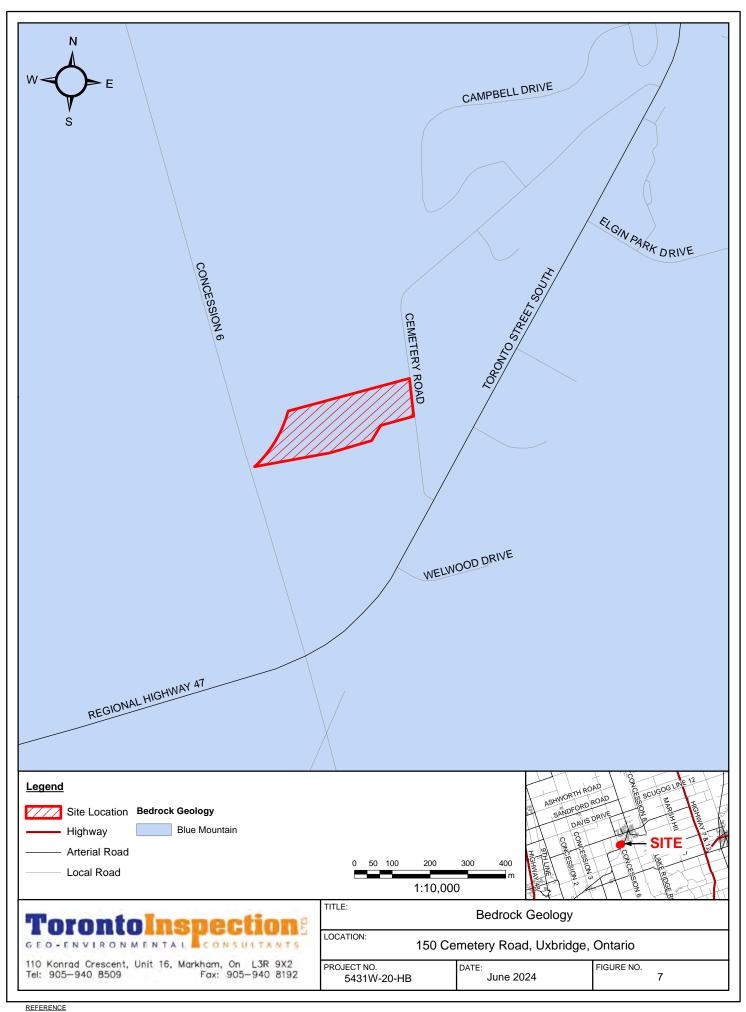

FIGURES


REFERENCE

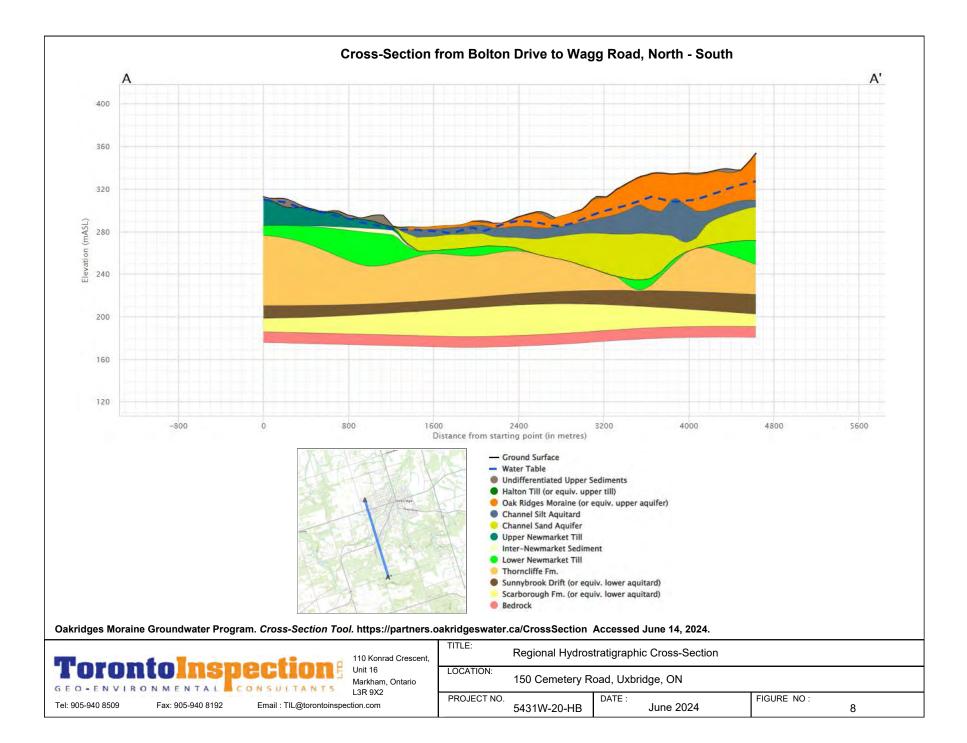

Pervice Layer Credits: Source: ESRI, DigitalGlobe, GeoEye, and Earthstar Geographics. Produced under license from the Ontario Ministry of Natural Resources. Copyright (c) Queens Printer 2017.

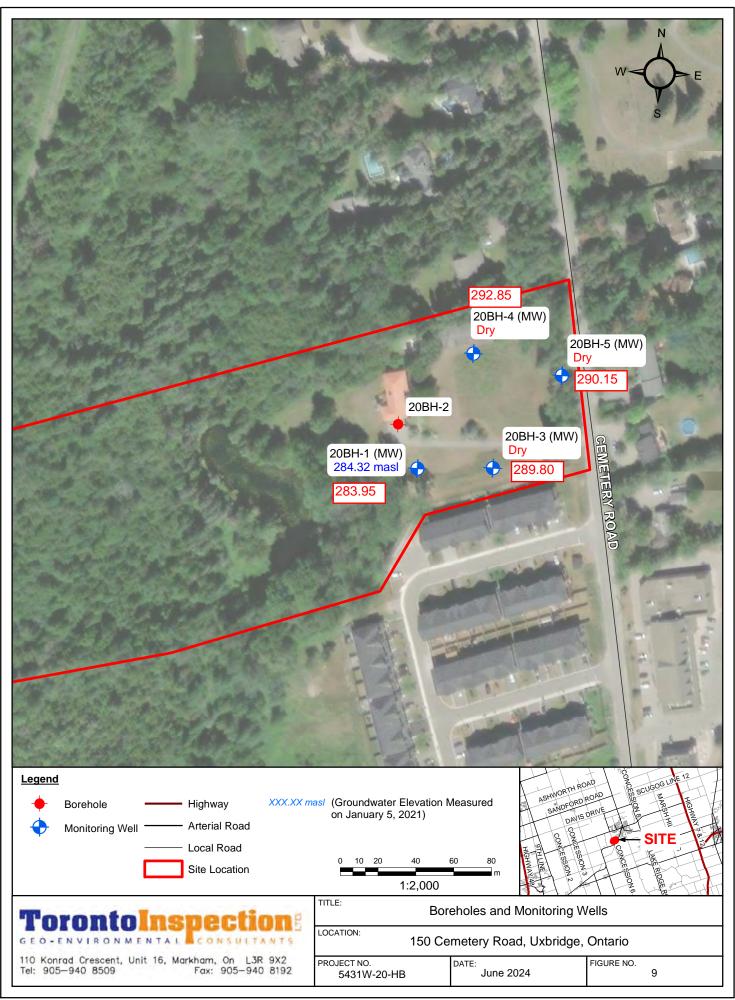

REFERENCE

<u>KETERKINE</u> Service Layer Credits: Source: ESRI, DigitalGlobe, GeoEye, and Earthstar Geographics. Produced under license from the Ontario Ministry of Natural Resources. Copyright (c) Queens Printer 2017.

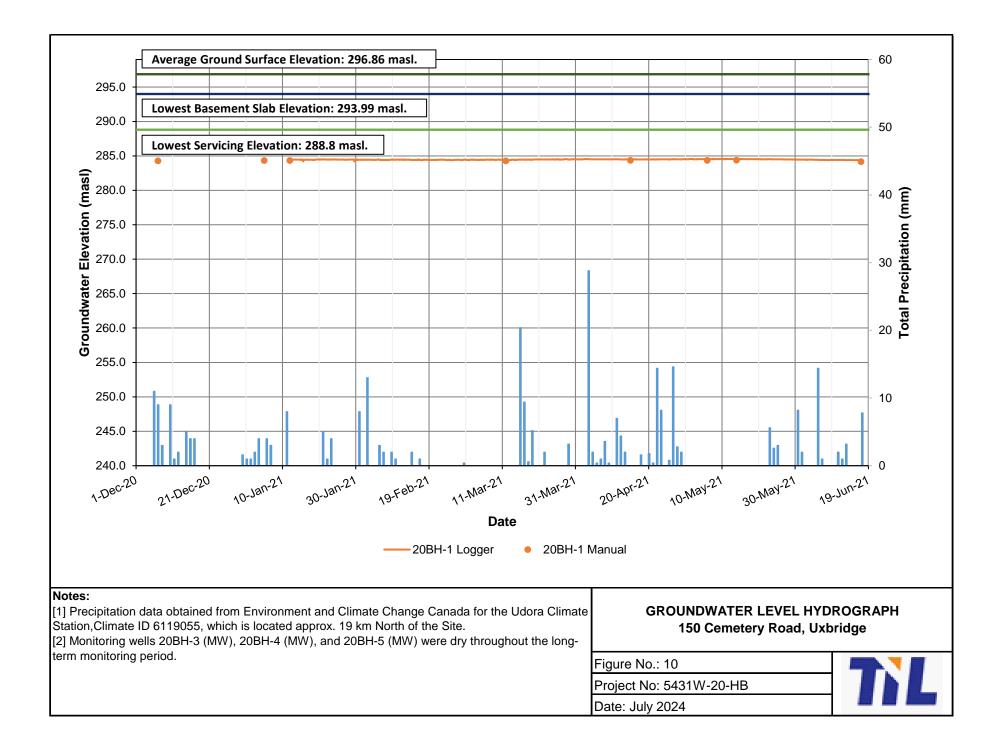


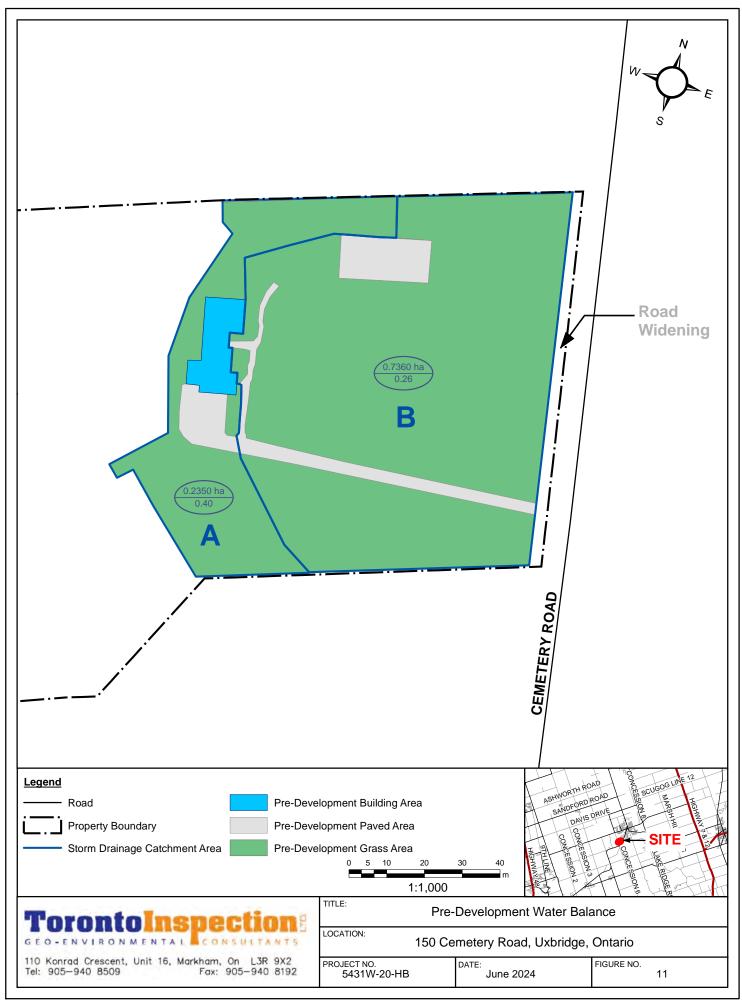
Net Enclosed Service Layer Credits: Source: ESRI, DigitalGlobe, GeoEye, and Earthstar Geographics. Service Layer Credits: Source: Chapman, L.J. and Putnam, D.F. 2007. Physiography of Southern Ontario; Ontario Geological Survey, Miscellaneous Release--Data 228. Produced under license from the Ontario Ministry of Natural Resources. Copyright (c) Queens Printer 2017.

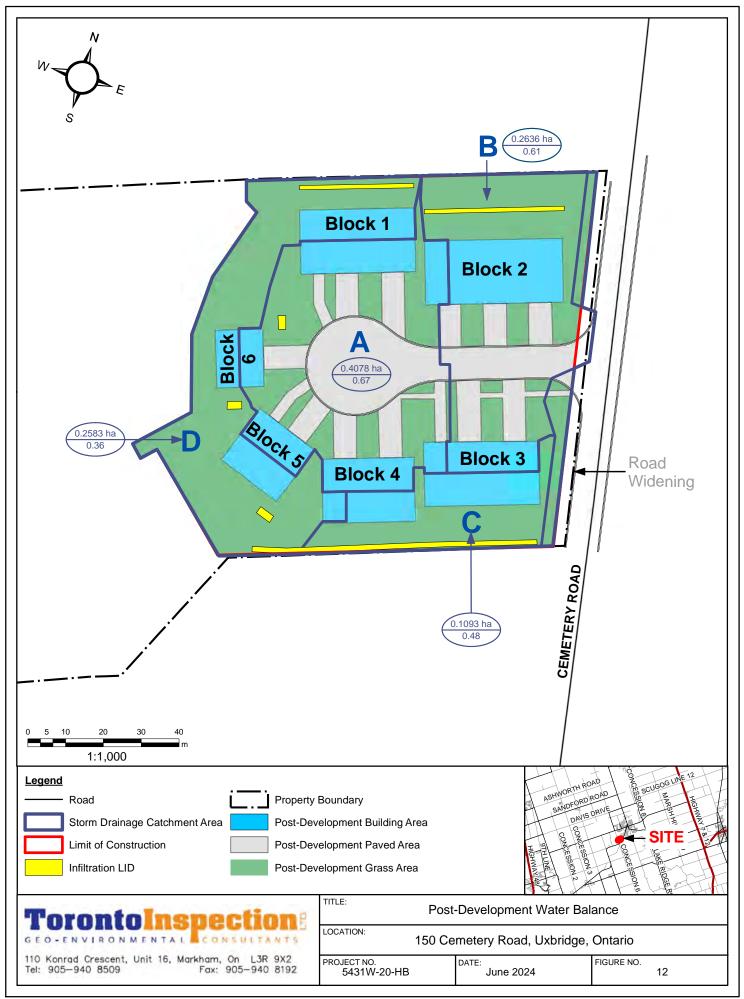



REFERENCE

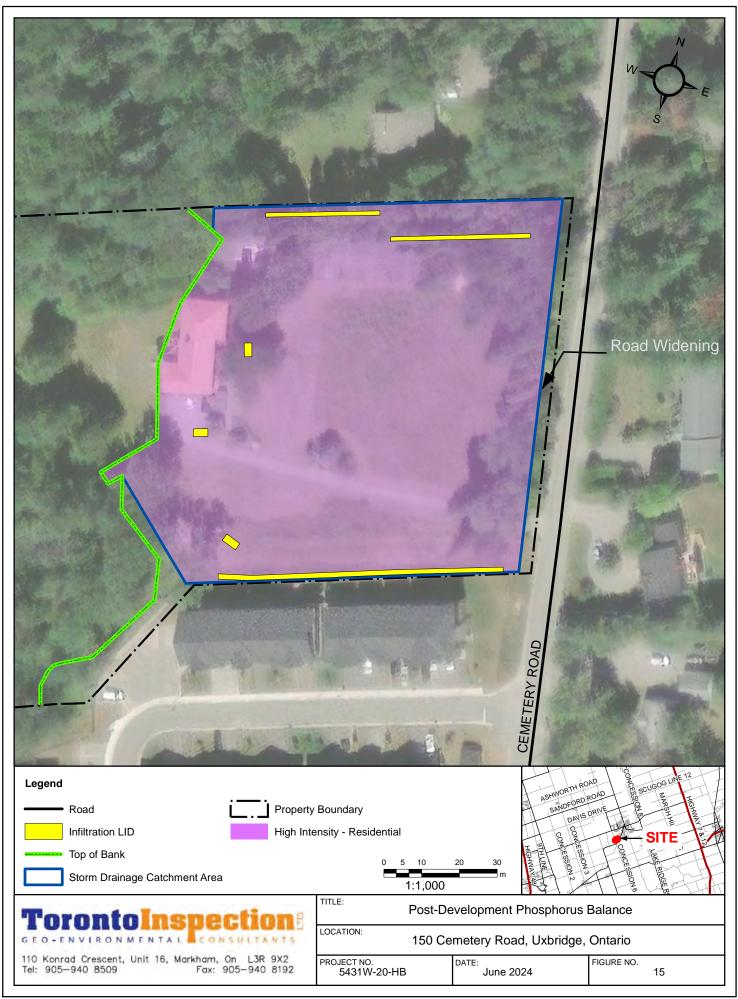
Service Layer Credits: Source: ESRI, DigitalGlobe, GeoEye, and Earthstar Geographics. Service Layer Credits: Source: Ontario Geological Survey 2010. Surficial geology of Southern Ontario; Ontario Geological Survey, Miscellaneous Release--Data 128-REV. Produced under license from the Ontario Ministry of Natural Resources. Copyright (c) Queens Printer 2017.



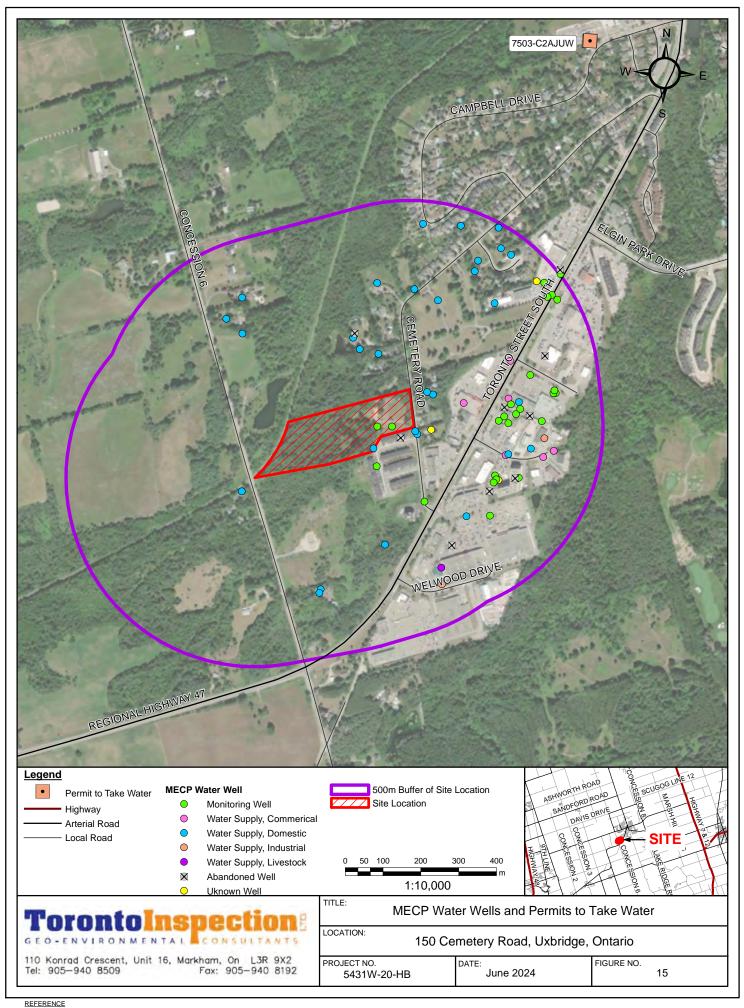

NETERINCE Service Layer Credits: Source: ESRI, DigitalGlobe, GeoEye, and Earthstar Geographics. Armstrong, D.K. and Dodge, J.E.P. 2007. Paleozoic geology of southern Ontario; Ontario Geological Survey, Miscellaneous Release--Data 219. Produced under license from the Ontario Ministry of Natural Resources. Copyright (c) Queens Printer 2017.


REFERENCE

REFERENCE


<u>KETERKINE</u> Service Layer Credits: Source: ESRI, DigitalGlobe, GeoEye, and Earthstar Geographics. Produced under license from the Ontario Ministry of Natural Resources. Copyright (c) Queens Printer 2017.

REFERENCE


Pervice Layer Credits: Source: ESRI, DigitalGlobe, GeoEye, and Earthstar Geographics. Produced under license from the Ontario Ministry of Natural Resources. Copyright (c) Queens Printer 2017.

	bitivision dated June 24, 2020.	CEMETER VAD	
Top of Bank	¥.	ASHWORTH RC	AAD BOAD BOOGLINE 12
Road		ASHWORTH RC SANDFORD	
Property Boundary			
Storm Drainage Catchment Area	0 5 10	20 30 Highman and a start of the start of th	
Low Intensity Development	1:1,0		
TorontoInspection		velopment Phosphorus E	Balance
GEO-ENVIRONMENTAL CONSULTANTS	LOCATION: 150 Ce	metery Road, Uxbridge,	Ontario
110 Konrad Crescent, Unit 16, Markham, On L3R 9X2 Tel: 905—940 8509 Fax: 905—940 8192	PROJECT NO. 5431W-20-HB	DATE: June 2024	FIGURE NO. 13

REFERENCE

Service Layer Credits: Source: ESRI, DigitalGlobe, GeoEye, and Earthstar Geographics. Produced under license from the Ontario Ministry of Natural Resources. Copyright (c) Queens Printer 2017.

APPENDIX A

Site Plan, Survey Plan and Civil Drwaings

KEY PLAN SCALE : NOT TO SCALE

DRAFT PLAN OF SUBDIVISION OF PART OF LOT 27, CONCESSION 6, GEOGRAPHIC TOWNSHIP OF UXBRIDGE, NOW IN THE, TOWNSHIP OF UXBRIDGE REGIONAL MUNICIPALITY OF DURHAM SCALE - I : 500 METRES

DISTANCES & COORDINATES SHOWN ON THIS PLAN ARE IN METRES AND CAN BE CONVERTED TO FEET BY DIVIDING BY 0.3048.

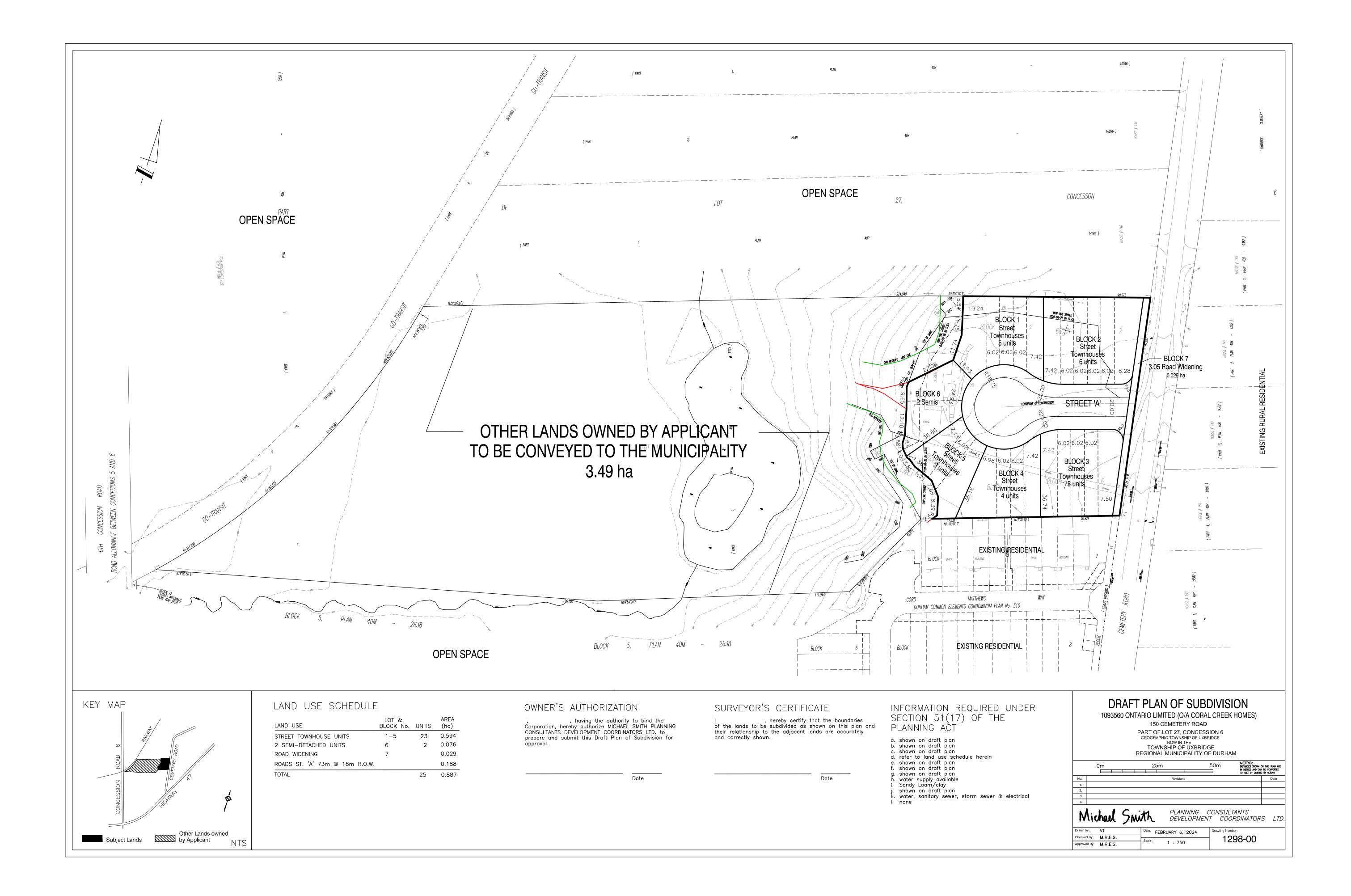
LAND USE SCHEDULE.		
		7 5502+ 110
LOT I (SINGLE-FAMILY DWELLING HOUSE) (R2) - LOT I - LOT FRONTAGE = 15.00m (15.0 MIN)		3.5502! На.
BLOCK 2 (ROW DWELLING HOUSE) (RM)		0.1626: Ha.
- UNIT I - LOT FRONTAGE = 0.0m (0.0 MIN)		
- LOT AREA = 000 SQ.M. (000 SQ.M. MIN) - UNIT 2 - LOT FRONTAGE = 0.0m (0.0 MIN)	1	
- LOT AREA = 000 SQ.M. (000 SQ.M. MIN) - UNIT 3 - LOT FRONTAGE = 0.0m (0.0 MIN))	
- LOT AREA = 000 SQ.M. (000 SQ.M. MIN) - UNIT 4 - LOT FRONTAGE = 0.0m (0.0 MIN))	
- LOT AREA = 000 SQ.M. (000 SQ.M. MIN) - UNIT 5 - LOT FRONTAGE = 0.0m (0.0 MIN)		
- LOT AREA = 000 SQ.M. (000 SQ.M. MIN) - UNIT 6 - LOT FRONTAGE = 0.0m (0.0 MIN)		
- LOT AREA = 000 SQ.M. (000 SQ.M. MIN)		
BLOCK 3 (ROW DWELLING HOUSE) (RM)		0.1100: Ha.
- UNIT I - LOT FRONTAGE = 0.0m (0.0 MIN) - LOT AREA = 000 SQ.M. (000 SQ.M. MIN)	1	
- UNIT 2 - LOT FRONTAGE = 0.0m (0.0 MIN) - LOT AREA = 000 SQ.M. (000 SQ.M. MIN))	
- UNIT 3 - LOT FRONTAGE = 0.0m (0.0 MIN) - LOT AREA = 000 SQ.M. (000 SQ.M. MIN) - UNIT 4 - LOT FRONTAGE = 0.0m (0.0 MIN))	
- LOT AREA = 000 SQ.M. (000 SQ.M. MIN) - UNIT 5 - LOT FRONTAGE = 0.0m (0.0 MIN))	
- LOT AREA = 000 SQ.M. (000 SQ.M. MIN))	
BLOCK 4 (ROW DWELLING HOUSE) (RM)		0.1008: Ha.
- UNIT I - LOT FRONTAGE = 0.0m (0.0 MIN) - LOT AREA = 000 SQ.M. (000 SQ.M. MIN)	1	
- UNIT 2 - LOT FRONTAGE = 0.0m (0.0 MIN) - LOT AREA = 000 SQ.M. (000 SQ.M. MIN))	
- UNIT 3 - LOT FRONTAGE = 0.0m (0.0 MIN) - LOT AREA = 000 SQ.M. (000 SQ.M. MIN)	1	
BLOCK 5 (ROW DWELLING HOUSE) (RM)		0.1023: Ha.
- UNIT I - LOT FRONTAGE = 0.0m (0.0 MIN)	1	
- LOT AREA = 000 SQ.M. (000 SQ.M. MIN) - UNIT 2 - LOT FRONTAGE = 0.0m (0.0 MIN) - LOT AREA = 000 SQ.M. (000 SQ.M. MIN)		
- UNIT 3 - LOT AREA - 000 SQ.M. (000 SQ.M. MIN) - UNIT 3 - LOT FRONTAGE = 0.0m (0.0 MIN) - LOT AREA = 000 SQ.M. (000 SQ.M. MIN)		
- UNIT 4 - LOT FRONTAGE = 0.0m (0.0 MIN) - LOT AREA = 000 SQ.M. (000 SQ.M. MIN)		
BLOCK 6 (ROW DWELLING HOUSE) (RM)		0.1403: Ha.
- UNIT I - LOT FRONTAGE = 0.0m (0.0 MIN)		
- LOT AREA = 000 SQ.M. (000 SQ.M. MIN) - UNIT 2 - LOT FRONTAGE = 0.0m (0.0 MIN)		
- LOT AREA = 000 SQ.M. (000 SQ.M. MIN) - UNIT 3 - LOT FRONTAGE = 0.0m (0.0 MIN)		
- LOT AREA = 000 SQ.M. (000 SQ.M. MIN) - UNIT 4 - LOT FRONTAGE = 0.0m (0.0 MIN)		
- LOT AREA = 000 SQ.M. (000 SQ.M. MIN) - UNIT 5 - LOT FRONTAGE = 0.0m (0.0 MIN)		
- LOT AREA = 000 SQ.M. (000 SQ.M. MIN)	1	0 00000 110
BLOCK 7 (STREET WIDENING) STREET 'A' - 58.5m LONG		0.0296: Ha. 0.1810: Ha.
	TOTAL	

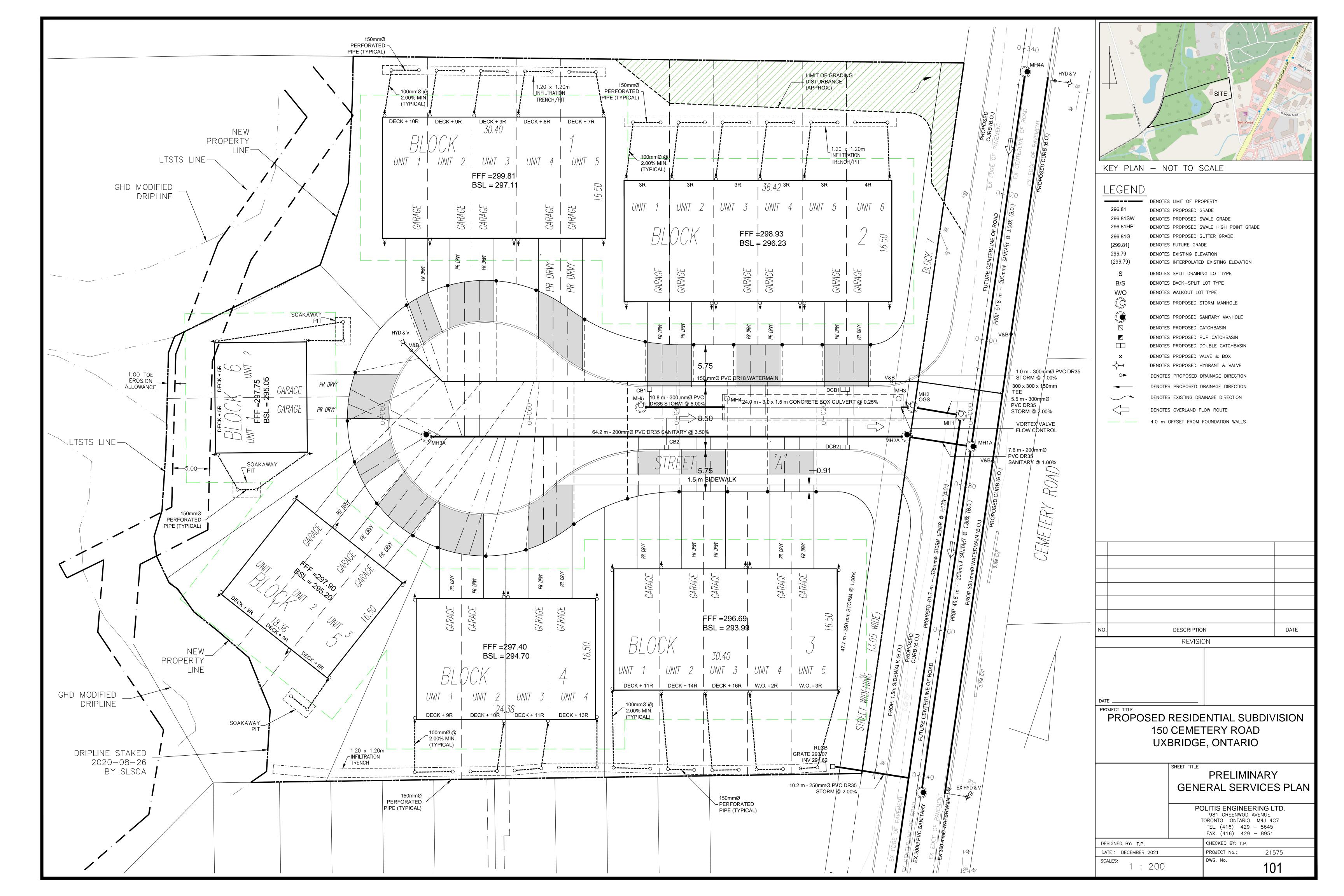
INFORMATION REQUIRED AS REQUIRED UNDER SECTION 51(2) OF THE PLANNING ACT R.S.O. 1990 CHAP. P. 13.

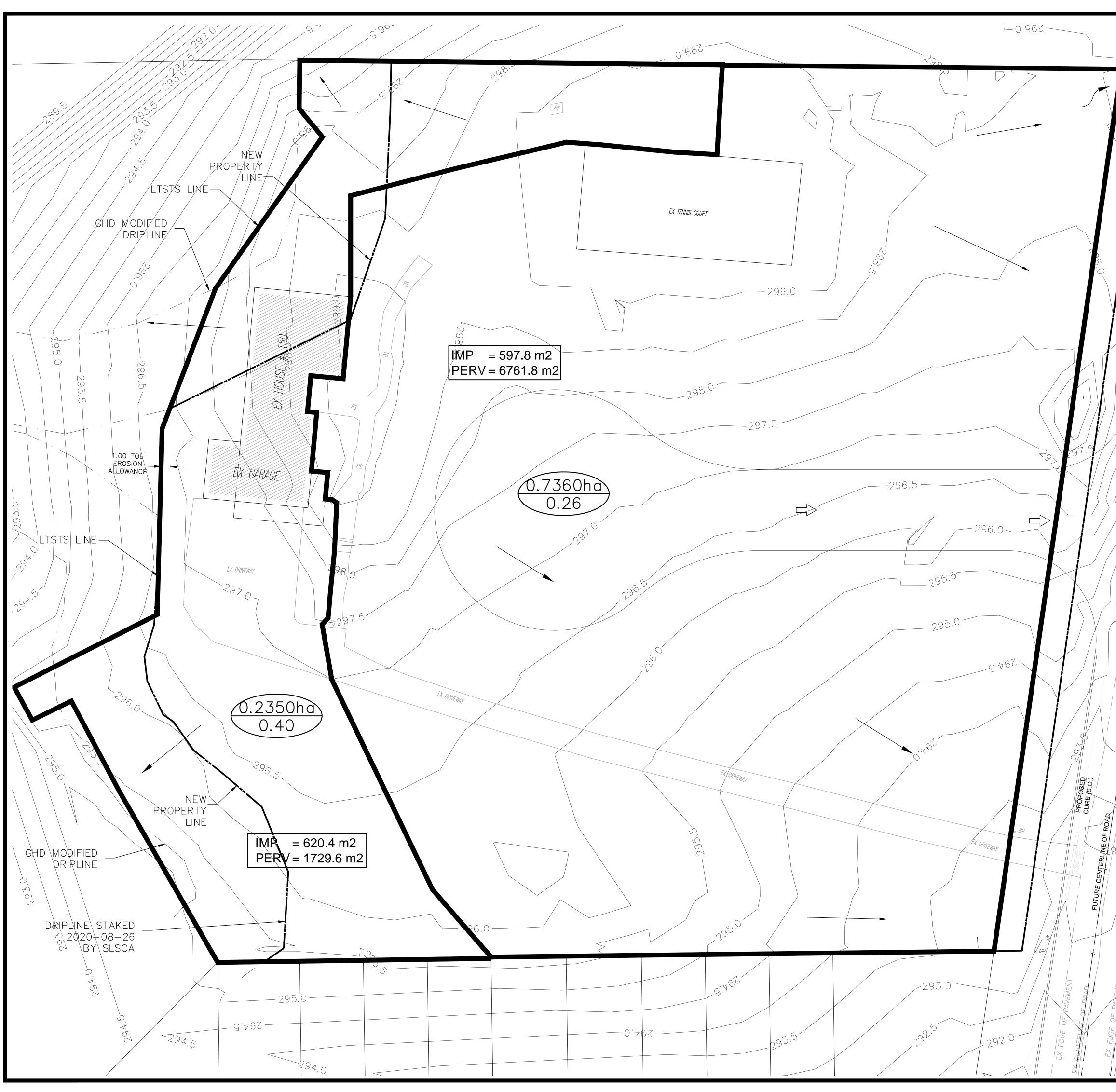
- A. AS SHOWN B. AS SHOWN C. AS SHOWN D. AS SHOWN ON THE SCHEDULE OF LAND USE E. AS SHOWN F. AS SHOWN G. AS SHOWN H. MUNICIPAL WATER I. SANDY TILL J. AS SHOWN K. MUNICIPAL SANITARY AND STORM SEWERS L. AS SHOWN

SURVEYOR'S CERTIFICATE. I HEREBY CERTIFY THAT THE BOUNDARIES OF THE LAND TO BE SUBDIVIDED AS SHOWN ON THIS PLAN AND THEIR RELATIONSHIP TO ADJACENT LANDS ARE ACCURATELY AND CORRECTLY SHOWN.

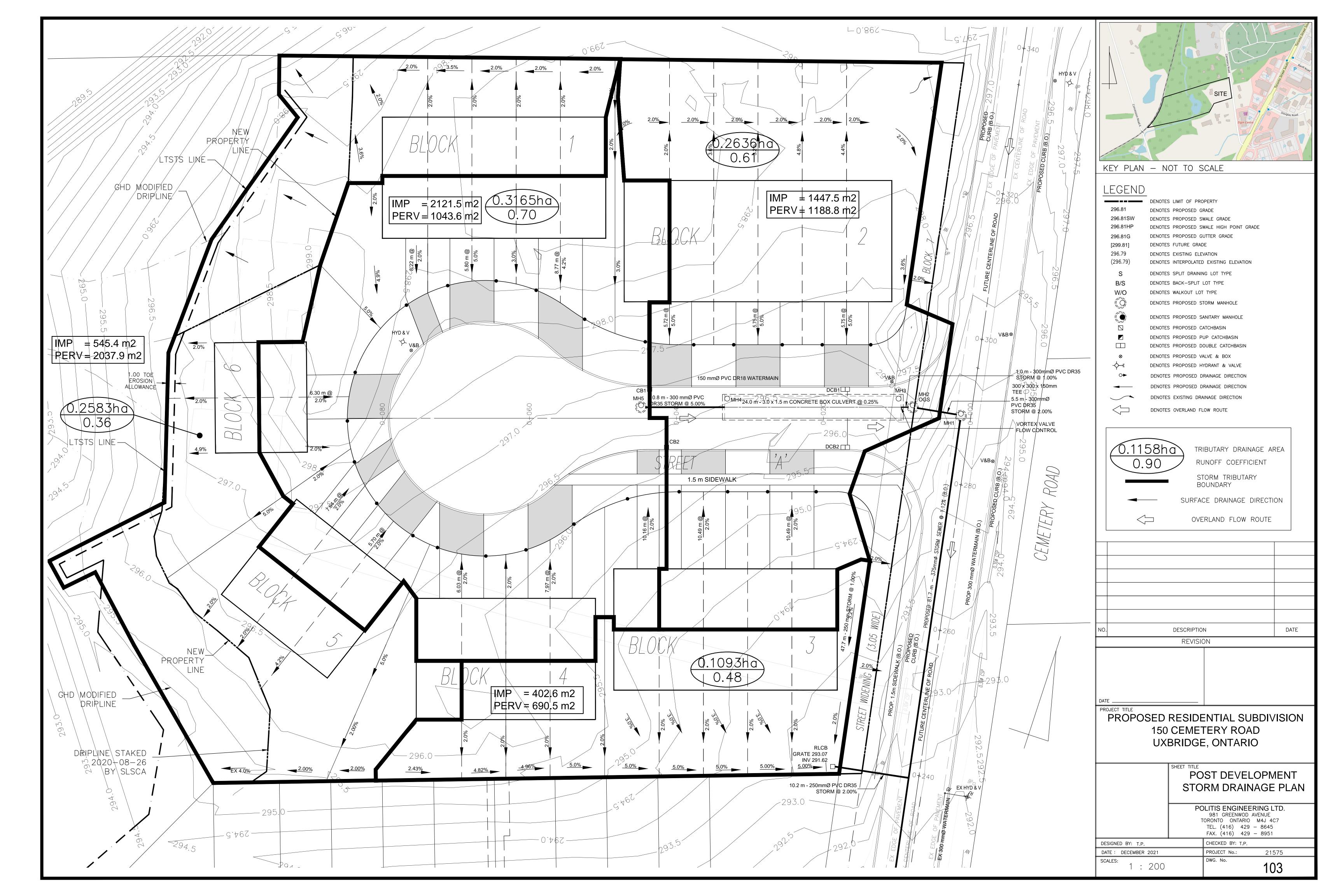
_ __ <u>JUNE 24, 2020 __</u> __ _ DATE ____

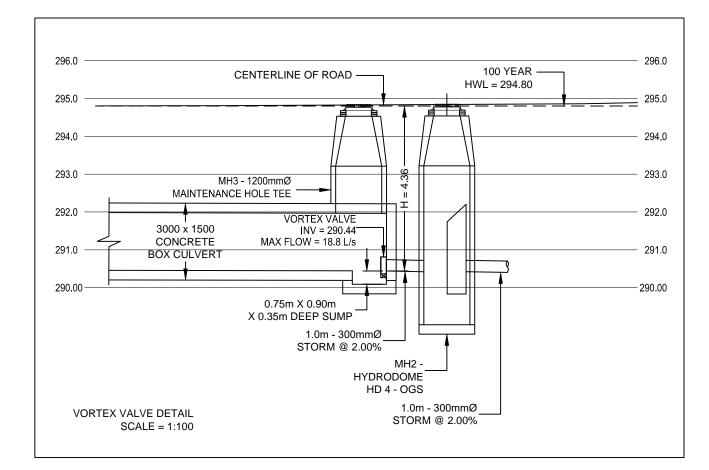

L9L 1A6 TEL. (905) 985-3600 FAX. (905) 985-2347

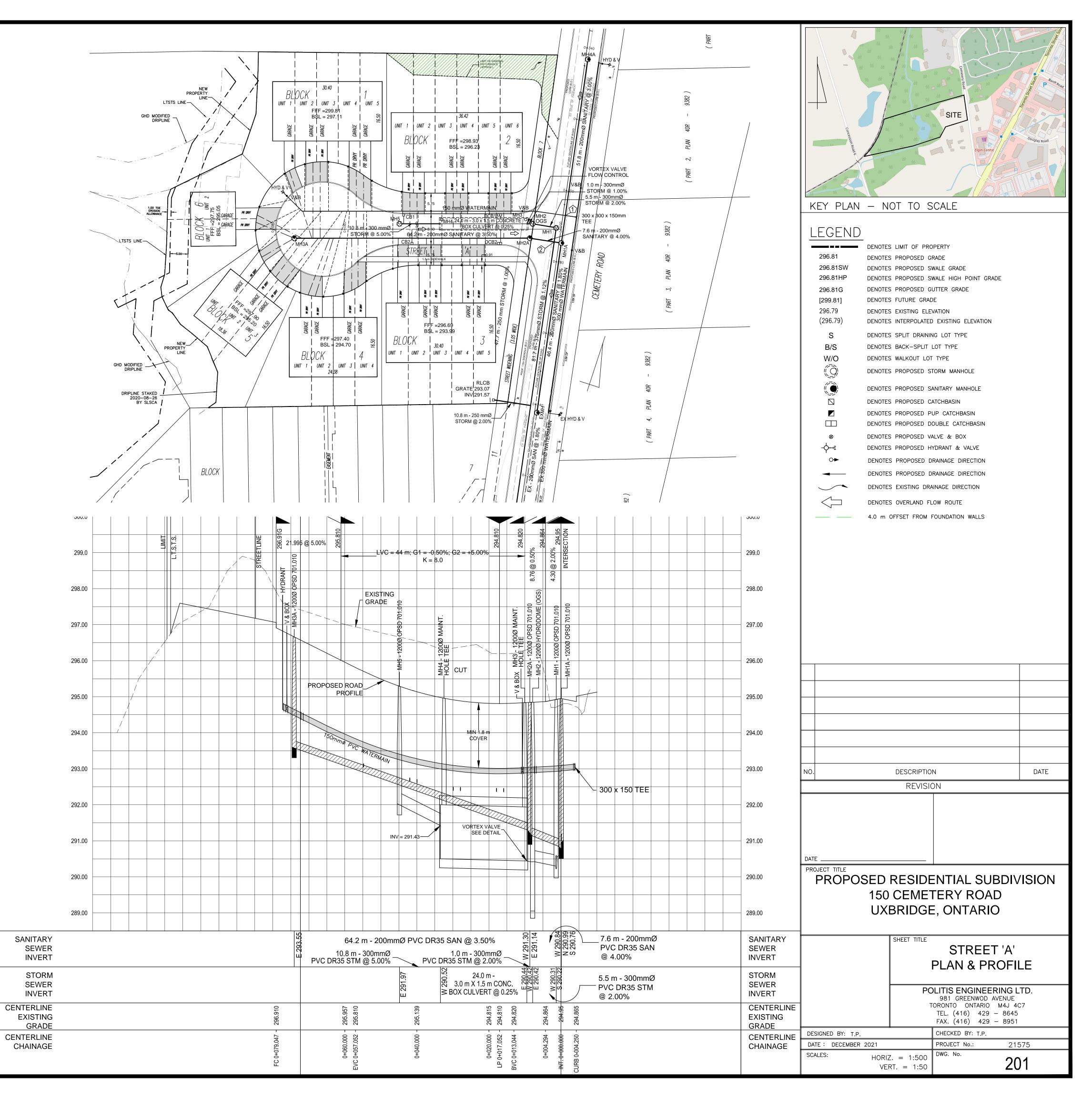

H. F. GRANDER Co. Ltd. ONTARIO LAND SURVEYOR 1575 HIGHWAY 7A WEST, UNIT 2A POST OFFICE BOX 616 PORT PERRY, ONTARIO

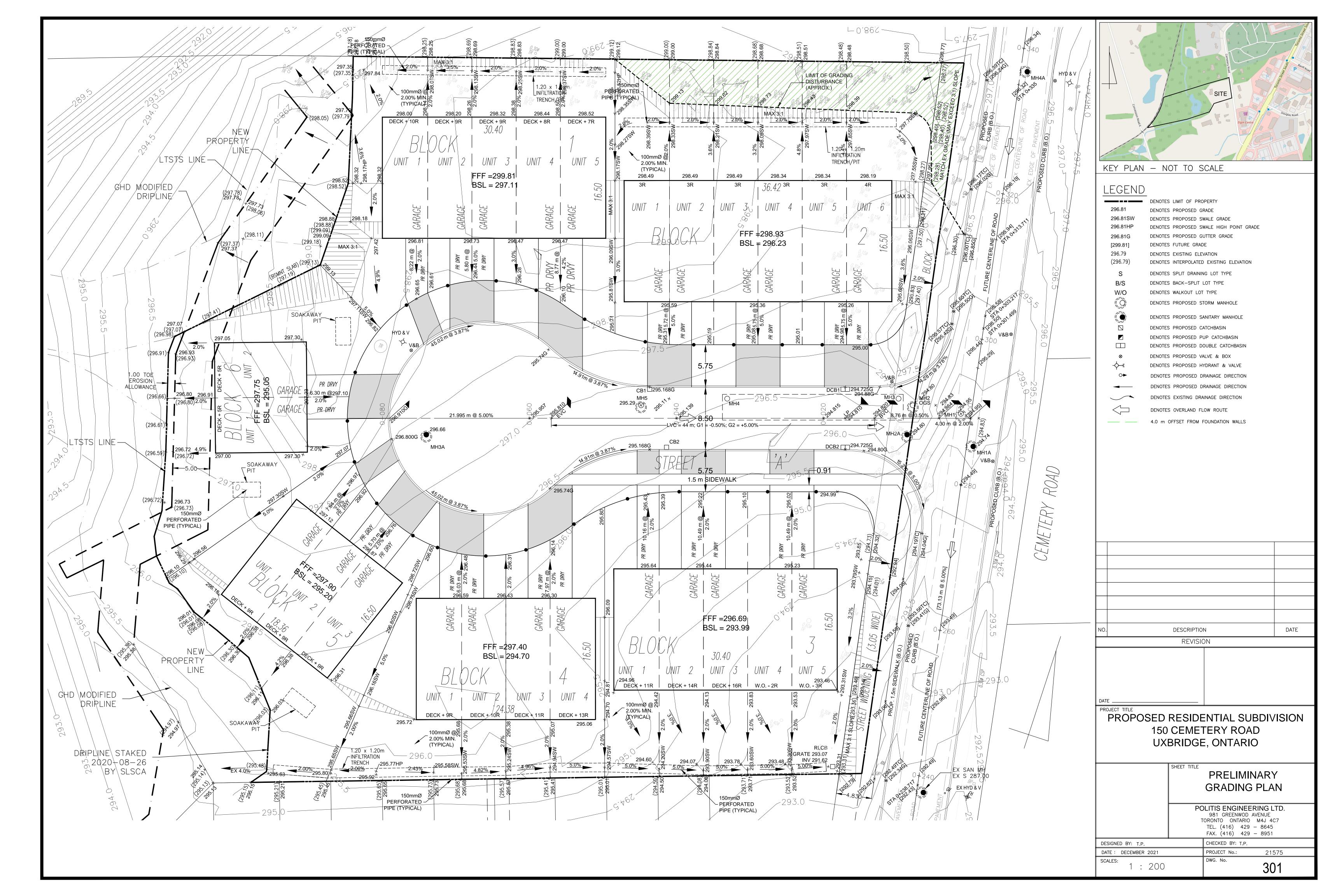

OWNER'S CERTIFICATE. I, THE REGISTERED OWNERS OF THE SUBJECT LANDS, HEREBY AUTHORIZE H. F. GRANDER Co. Ltd. TO PREPARE A DRAFT PLAN OF SUBDIVISION FOR APPROVAL.

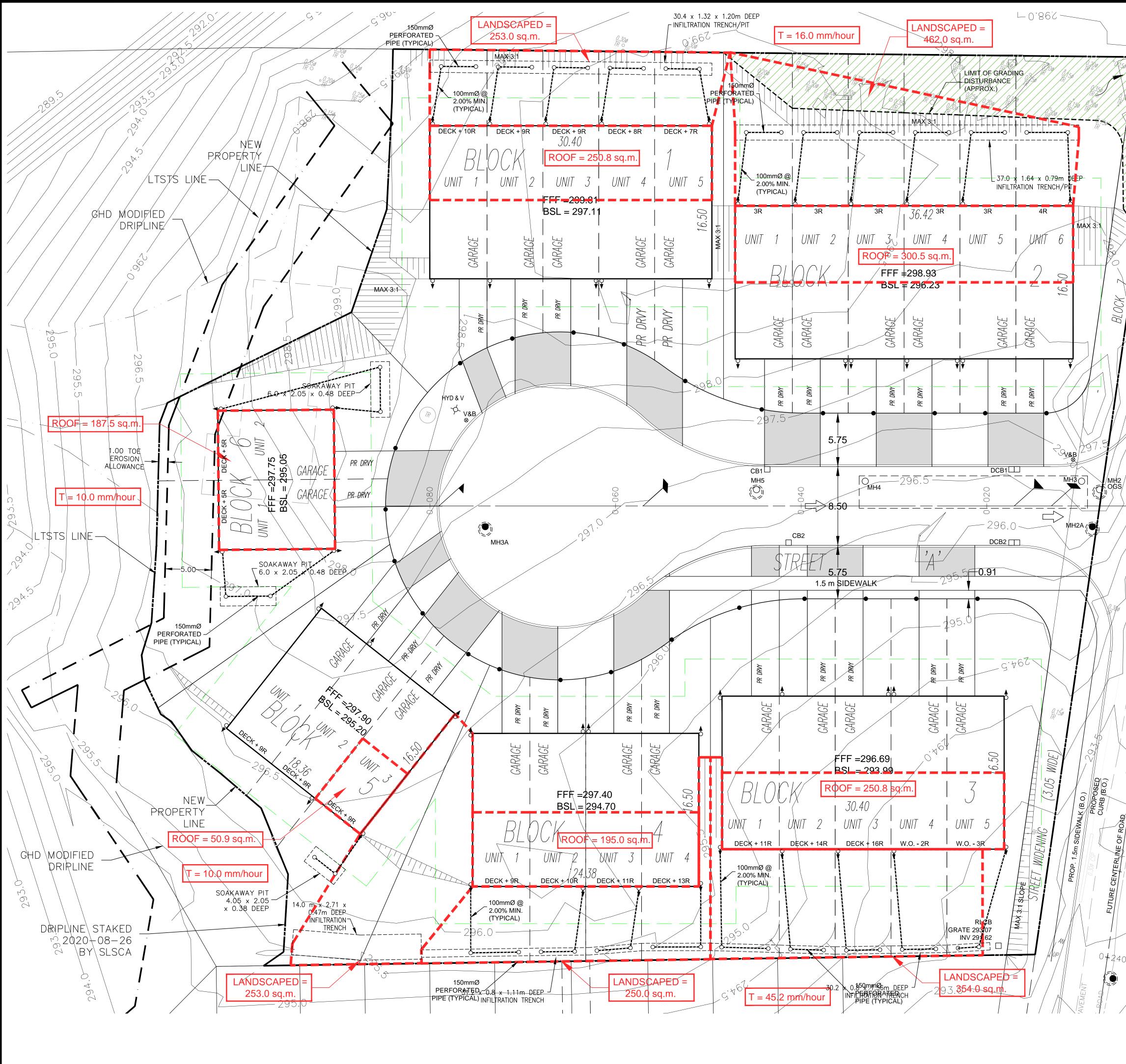
REGION OF DURHAM FILE: S-U-2020-__


CADDFILE: 8052-MGP_I.DPD PROJECT No. 8052-MGP




DENOTES PROPOSED DRAINAGE DIRECTION DENOTES OVERLAND FLOW ROUTE DENOTES OVERLAND FLOW ROUTE
NO. DESCRIPTION DATE
DATE PROJECT TITLE PROJECT TITLE PROPOSED RESIDENTIAL SUBDIVISION 150 CEMETERY ROAD UXBRIDGE, ONTARIO SHEET TITLE PRE-DEVELOPMENT STORM DRAINAGE PLAN POLITIS ENGINEERING LTD. PH302 - 133 WYNFORD DRIVE TOROND M3C 0J5 TEL (416) 429 - 8645
TEL. (416) 429 - 8645 FAX. (416) 429 - 8951

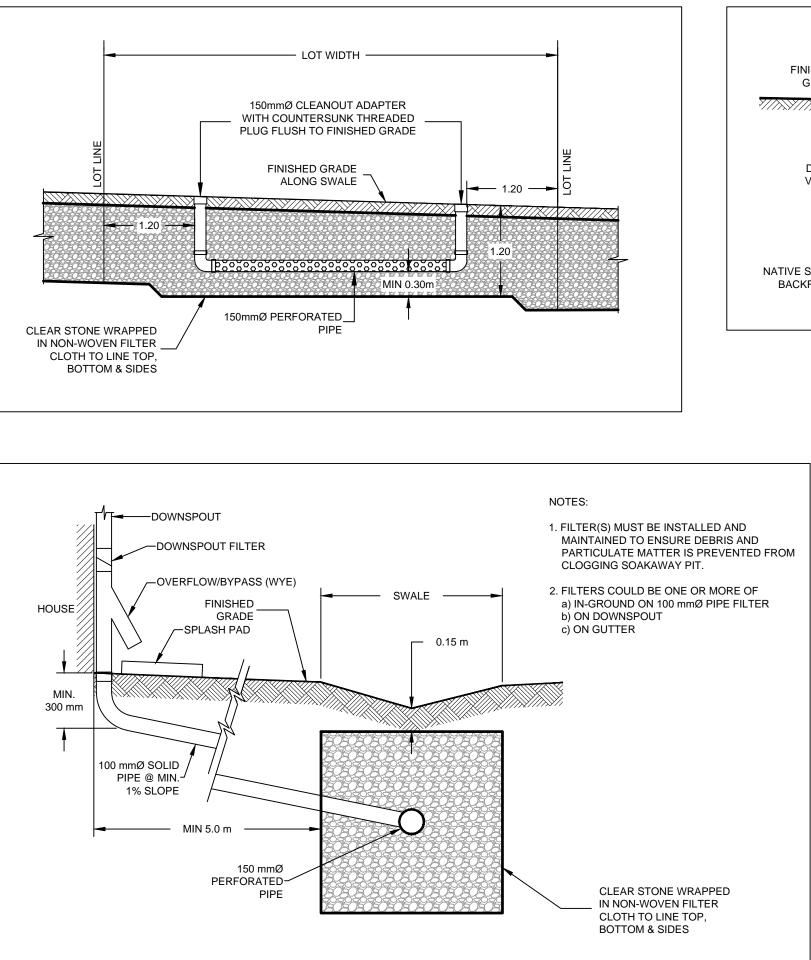


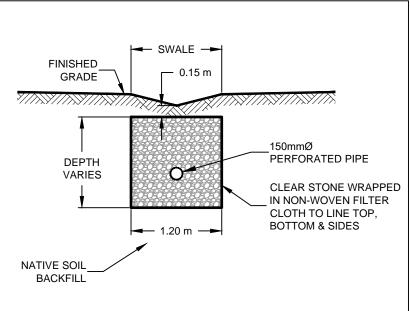

PIPE CROSSING DATA											
\bigcirc	PIPE 1	PIPE 2	CLEARANCE								
1	200ø SAN INV = 291.20	150ø WTR TOP = 293.34	1.75 m								
2	375ø STM INV = 290.18	200ø SAN INV = 290.89	0.31 m								

CENTERLINE

MATCHEX GRADE (MAX EXCEED 3.1) SLOPE MATCHEX GRADE (MAX EXCEED 3.1) SLOPE 2.100 PROPOSED CURB (B.0.) 297.0 EX EDGE OF PAVEMENT PROPOSED CURB (B.0.) 297.0 EX EDGE OF PAVEMENT PROPOSED CURB (B.0.) 297.0 0.867.440 0.87.4400 0.87.4400 0.87.4400 0.87.4400 0.87.4400 0.	KEY PLAN – NOT TO SCALE
V&B V&B V&B V&B V&B V&B V&B V&B	DENOTES LIMIT OF PROPERTY 296.81 DENOTES PROPOSED GRADE 296.81SW DENOTES PROPOSED SWALE GRADE 296.81HP DENOTES PROPOSED SWALE HIGH POINT GRADE 296.81G DENOTES PROPOSED GUTTER GRADE 296.81G DENOTES FUTURE GRADE 296.79 DENOTES FUTURE GRADE 296.79 DENOTES INTERPOLATED EXISTING ELEVATION (296.79) DENOTES SPLIT DRAINING LOT TYPE B/S DENOTES BACK-SPLIT LOT TYPE W/O DENOTES PROPOSED STORM MANHOLE Image: Composed proposed pup catchbasin Image: Composed pup catchbasin Image: Composed proposed pup catchbasin Image: Composed pup catchbasin Image: Composed proposed pup catchbasin Image: Composed pup catchbasin Image: Composed proposed pup catchbasin Image: Composed pup catchbasin Image: Composed proposed public catchbasin Image: Composed pup catchbasin Image: Composed proposed public catchbasin Image: Composed pup catchbasin Image: Composed proposed public catchbasin Image: Composed pup catchbasin Image: Composed proposed public catchbasin Image: Composed pup catchbasin Image: Composed proposed public catchbasin Image: Composed pup catchbasin Ima
MH1 MH1 MH1 MH1 MH1 MH1 MH1 MH1	DENOTES PROPOSED DRAINAGE DIRECTION DENOTES EXISTING DRAINAGE DIRECTION DENOTES OVERLAND FLOW ROUTE 4.0 m OFFSET FROM FOUNDATION WALLS LID TRIBUTARY BOUNDARY
	Image:
93.0 NO NO NO NO NO NO NO NO NO NO NO NO NO	DATEPROJECT TITLE PROPOSED RESIDENTIAL SUBDIVISION 150 CEMETERY ROAD UXBRIDGE, ONTARIO SHEET TITLE LID SYSTEMS PLAN
EX HYD & V	POLITIS ENGINEERING LTD. 981 GREENWOD AVENUE TORONTO ONTARIO M4J 4C7 TEL. (416) 429 - 8645 FAX. (416) 429 - 8951 DESIGNED BY: T.P. DATE : DECEMBER 2021 PROJECT No.: 21575 SCALES: SCALE - AS SHOWN

SOAKAWAY PIT INSPECTION & MAINTENANCE


- . Downspout filters to be inspected and cleared of any accumulated leaves, debris, or sediment at a minimum once annually and/or following every major storm event (>25 mm).
- 2. A water level inspection of the soakaway pit is to be performed via the monitoring well at least 72 hours following every major storm event (>25 mm) to ensure the system is operating as designed.
- Ensure the monitoring well plug is fastened securely in order to impede leaves, debris and sediment from entering the system. Keep lid flush to grade to avoid potential tripping hazards in landscaped areas.


SOAKAWAY PIT/INFILTRATION SYSTEM CONSTRUCTION CONSIDERATIONS

- 1. Soakaway/infiltration systems to be located a minimum of 5.0 m from any foundation wall.
- 2. Heavy equipment and traffic should avoid traveling over the proposed location of the soakaway pits to minimize the compaction of the soil.
- Soakaway pits should be kept "off-line" until construction is complete. They should never serve as a sediment control device during construction. Sediment should be prevented from entering the facility.
- Upland drainage areas to be stabilized following construction to reduce sediment loads.
 The seakeway pits should be excepted to design dimensions.
- 5. The soakaway pits should be excavated to design dimensions from the side using a backhoe or excavator. The base of the facility should be level or nearly level.

GROUNDWATER LEVEL NOTE:

From Toronto Inspections Ltd. Hydrogeological Investigation prepared February 10, 2021 all monitoring wells were installed to a minimum depth of 6.1 m below the ground surface and were found to be dry. All proposed infiltration systems are proposed to have the underside to be within 3.0 m of the existing grade, except Block 6 -Unit 2 soakaway pit which will have its underside at ±4.0 m below the existing grade. The closest monitoring well is 20BH-1(MW) which was drilled to 12.3 m depth and groundwater level was found to be at 11.88 m deep. Therefore all proposed infiltration/soakawy systems are more than 1.0 m above the measured water levels.

60 · · · · · · · · · · · · · · · · · · ·	¢å ♥å ♦å		Zieceon
		8	Contraction of the second seco
64 V8 64	40 40 60 60 60 60 60 60 60 60 60 60 60 60 60	Cemetery Road	Bann Road
			Sant Road
		SITE	R
concession road 6	50 50 50 50 50 50 50 50		Douglas Road
, sound 6	00 tà tà tà	Elgin Cent	
00 <u>50</u> 00 50	\$6		
			1 th
KEY PLAN – N	NOT TO S	SCALE	
<u>LEGEND</u>			
296.81 DENOTE	ES LIMIT OF PRO ES PROPOSED G		
	ES PROPOSED S ES PROPOSED S	WALE GRADE WALE HIGH POINT GR	ADE
	ES PROPOSED G		
	ES FUTURE GRAI		
		DEXISTING ELEVATION	l
	ES SPLIT DRAINII ES BACK-SPLIT		
W/O DENOTE	ES WALKOUT LO		
	ES PROPOSED S		
	ES PROPOSED S ES PROPOSED C	ANITARY MANHOLE ATCHBASIN	
	ES PROPOSED P	UP CATCHBASIN	
	ES PROPOSED D ES PROPOSED V	OUBLE CATCHBASIN	
		YDRANT & VALVE	
		RAINAGE DIRECTION	
		RAINAGE DIRECTION	
	ES OVERLAND FI	OW ROUTE	
4.0 m	OFFSET FROM	FOUNDATION WALLS	
NO.	DESCRIPTIC	Ν	
NO.	DESCRIPTIC		DATE
NO.			DATE
NO.			DATE
NO.			DATE
DATE			DATE
	REVISI		
DATE PROJECT_TITLE PROPOSED 150	RESIDE CEME	ENTIAL SU	BDIVISION
DATE PROJECT_TITLE PROPOSED 150	RESIDE CEME	ON ENTIAL SU	BDIVISION
DATE PROJECT_TITLE PROPOSED 150	RESIDE CEME	ENTIAL SU	BDIVISION
DATE PROJECT_TITLE PROPOSED 150	RESIDE CEME BRIDGE	ENTIAL SU	IBDIVISION D O
DATE PROJECT_TITLE PROPOSED 150	RESIDE RESIDE CEME BRIDGE	ENTIAL SU TERY ROA E, ONTARI	IBDIVISION D O
DATE PROJECT_TITLE PROPOSED 150	RESIDE CEME BRIDGE	ENTIAL SU TERY ROA E, ONTARI LID SYS ^T ES & DET	BDIVISION D O TEMS TAILS PLAN ERING LTD.
DATE PROJECT_TITLE PROPOSED 150	RESIDE CEME BRIDGE SHEET TITLE NOT PC	ENTIAL SU ENTIAL SU TERY ROA E, ONTARI LID SYS ES & DET DLITIS ENGINEE 981 GREENWOD ORONTO ONTARIO	BDIVISION D O TEMS TAILS PLAN ERING LTD. AVENUE M4J 4C7
DATE PROJECT TITLE PROPOSED 150 UX	RESIDE CEME BRIDGE SHEET TITLE NOT PC	ENTIAL SU ENTIAL SU TERY ROA E, ONTARI LID SYS ^T ES & DET DLITIS ENGINEE 981 GREENWOD ORONTO ONTARIO TEL. (416) 429 FAX. (416) 429	BDIVISION D O TEMS TAILS PLAN ERING LTD. AVENUE M4J 4C7 – 8645
DATE PROJECT_TITLE PROPOSED 150	RESIDE CEME BRIDGE SHEET TITLE NOT PC	ENTIAL SU ENTIAL SU TERY ROA E, ONTARI LID SYS ^T ES & DET DLITIS ENGINEE 981 GREENWOD ORONTO ONTARIO TEL. (416) 429	BDIVISION D O TEMS TAILS PLAN ERING LTD. AVENUE M4J 4C7 – 8645

APPENDIX B

Borehole Logs

Project No.	<u>5431W-20-G</u> A	og o	D	f B	ore	ehc	ble	<u>20</u>)Bł				<u>/)</u>	
Project:	Geotechnical Investigation										Dwg No Sheet N			of 1
Location:	150 Cemetery Road, Uxbrid	dge, Oi	nta	ario							Chooti		_`	
Date Drilled: Drill Type: Datum:	Date Drilled: <u>12/1/20</u> Drill Type: <u>Truck Mounted Drill Rig</u>		-	Auger Sa SPT (N) Dynamic Shelby T Field Var	Value Cone Te ube	est N Value	0		Natura Plastic Uncon % Stra Penetr	I Moistur and Liqu fined Cou in at Fail cometer	uid Limit mpressior			Natural
G Y W B L O	Soil Description	ELEV. m	DEPTH	2		0 0	60	80			ture Conters (% Dry W	00 nt % /eight)		Unit Weight
Gro HUI 25 DIS 30 	Dist to wet	296.20 296.17 296.15 295.30 295.30	H 0 1 2 3 4 5 6 7				8	88 88 88 88 9 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1						kN/m3
	me siltayer of sand and silt at 9.0m bist to very moist, wet below 11.5m D OF BOREHOLE FE: In completion of drilling: tter level at 12.0m	284.28 <u>283.55</u>	8 9 10 11				833 70 0 70 0 70 0			×				

NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEF

URE USE BT UTHERS									
Time	Water Level (m)	Depth to Cave (m)							
December 7, 202) 11.92m								

Project No.	<u>5431W-20-G</u> A LOG	of Borehole 20	<u>JBH-2</u>
			Dwg No. 3
Project:	Geotechnical Investigation		Sheet No. 1 of 1
Location:	150 Cemetery Road, Uxbridge, C	Intario	
Date Drilled: Drill Type: Datum:	12/1/20 Truck Mounted Drill Rig Geodetic	Auger Sample Auger Sample Dynamic Cone Test Field Vane Test	Headspace Reading (ppm) Natural Moisture × Plastic and Liquid Limit — Unconfined Compression ⊗ % Strain at Failure ⊗ Penetrometer ▲
ASF - 750 gran DIS - bro	Soil Description und Surface HALT PAVEMENT mm of asphalt over 150mm IURBED SOIL wm silty sand me gravelly sand	H H 0 1 1 20 40 60 80 80 80 80 80 80 80 80 80 80 80 80 80	Headspace Reading (ppm) 100 200 300 Natural Moisture Content % Atterberg Limits (% Dry Weight) 10 20 30 X

.

****	- 75mm of asphalt over 150mm	↓296.95										-12
***	granular base			þ						L		
	- brown silty sand	Ť	1	9						T.		 12
	some gravelly sand	Н								1		
	- loose			Ö						*		
			2									-
	- loose to compact at the top very					57					123112	
	- loose to compact at the top, very dense below 2.2m	-		38381		9				*		
	hrown silty fine sand		3	12.222211	2.22.2.22.1	12010	00000	1000000			12.22.22.2	
	- seams of sandy silt till at 4.5m - occasional seams of silt					Č	5			*		
	 - occasional seams of slit - moist to very moist 					-2 5 - 2 - 2 - 6 - 6 - 6 - 6	• • • • • • • •	· · · · · · · · · · · · ·			· · / · · · · · /	 14
												:
	_	-	4									:
	_											
						56	· / ·· · · · /			*		
	—		5			Ť						-14
							· · · · · · · · · · · · · · · · · · ·		· / · · · · · · · · · · ·			:
	—	-		39331								:
	_	_	6									:
						7				\downarrow		
	-					<u></u>		· · · · · · · · · · · · · ·	· · · · · · · · · ·	$\frac{1}{1}$	· · · · · · · · · ·	 -12
				38381						100		-
	_	-	7									 :
	_			36364			19919					:
						ð			· · · · · · · · · · · · ·	L.		
	-		8	<u></u>		$-\Psi$				\uparrow		-12
						1	· · · · · · · · · · ·		· · · · · · · · · · · · ·	:: :::		-
		288.40		2020		1000					13 11 13	:
	SAND	_	9									-
	- dense to very dense - brown fine sand			2828		3333	66 0			J		
	- some silt						φ			1		-12
	- moist to very moist											-
		-	10				1					 :
	_	_										-
						5				L		
	—	-	11			Ϋ́						-12
												-
	—	-		20201		22/2			231 - S			:
	_	_	12									 -
				30301		48						
	_	284.45				0				X		
	END OF BOREHOLE				: : : :	::::	::::			: : : :		
	NOTE:											
	Upon completion of drilling: - borehole open and dry			::::	: : : :	::::						
	solution open and dry											

Toronto Inspection Ltd.

-0	DRE USE BY OTHE	ERS	
	Time	Water Level (m)	Depth to Cave (m)
l			

Project No.	<u>5431W-20-G</u> A	Log	of	В	ore	eho	ole	<u>2(</u>	<u>)B</u>	<u>H-(</u>	<u>3 (N</u>	ΛN	/)	
											Dwg N	o. <u>4</u>		
Project:	Geotechnical Investigation	n								-	Sheet I	No1		of <u>1</u>
Location:	150 Cemetery Road, Uxb	oridge, O	nta	rio										
Date Drilled: Drill Type: Datum:	12/4/20 Truck Mounted Drill Rig Geodetic		- s	Shelby 7	Value Cone				Natura Plastic Uncor % Stra Penet	al Moistu c and Liq nfined Co ain at Fa rometer	uid Limit	⊢ ⁿ	• 	Natural
G Y W B L O	Soil Description	ELEV. m	DEPT		20	40	60 8	80		00 tural Mois berg Limi	200 3 sture Conte ts (% Dry V	800 ent % Veight)		Unit Weight
L Č Gro	ound Surface	295.95	н 0	Shear :	Strength	100	2	kPa				30		kN/m3
- 15 DIS - 5 bro - 5 b	Omm in thickness TURBED SOIL own fine sand ice topsoil, rootlets ry loose ry moist NDY SILT mpact to very dense own me seams of sand oist to very moist DOF BOREHOLE	295.80 295.05 		3		8		93%290r	au					
	IE: on completion of drilling: rehole open and dry													

Toronto Inspection Ltd.

ORE USE BY OTHE	RS	
Time	Water Level (m)	Depth to Cave (m)
December 7, 2020) Dry	

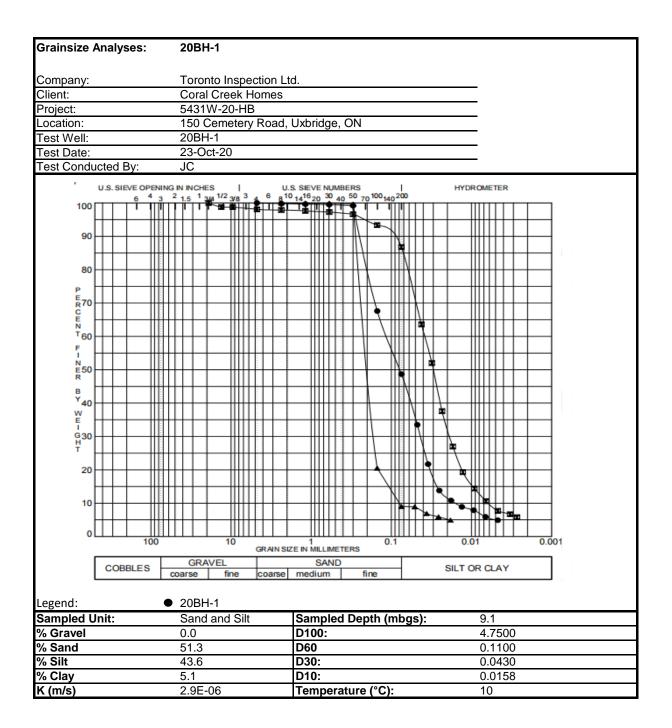
Project No.	<u>5431W-20-G</u> A	Log	0	f B	or	e	hc	ble		<u> 20</u>)Bl		1 (N Dwg N		/)	
Project:	Geotechnical Investigation										Sheet No. 1_ of 1					
Location:	150 Cemetery Road, Uxbridge, Ontario															
Date Drilled: Drill Type: Datum:	12/4/20 Truck Mounted Drill Rig Geodetic		_	Auger S SPT (N) Dynami Shelby Field Va) Value c Cone Tube	e Tes	t	0			Natura Plastic Uncor % Stra	space Re al Moistur c and Liqu fined Co ain at Fail rometer	re uid Limit mpressio	Ē	• 	
	Soil Description	ELEV.	DEPT	N Value E 20 40 60 80										Natural Unit Weight		
	ound Surface PSOIL	299.00 7 298.85	T H 0	Shear	Streng	th 100			200 k	(Pa		Atterberg Limits (% Dry Weight) <u>10 20 30</u>			kN	kN/m3
	50mm in thickness STURBED SOIL			R.									×		8	
- tra	rown to black fine sand and topsoil ace silt	f	1	Ŕ							*	<u> </u>				
- ve - wi SA		H			X						×					
- co	ompact to dense rown fine sand		2			24										
- m	NDY SILT TILL	296.10	3			X						1				
- de	ense to very dense, brown ace to some gravel	_	ľ			Ž	ا ⁵					×				
- sc	ome seams of fine sand ace clayey silt	_	4												-	
	oist	_							95	K2 <u>90</u> m	n m					
		_	5							9		*			P	
	TY SAND	293.50							/	/					-	
- br	ery dense rown silty fine sand	-	6						8			×				
EN	ery moist D OF BOREHOLE	292.45														
Up	TE: on completion of drilling: orehole open and dry															
2																
1/12/																
SA.GPJ																
N-20-C																
LGBE3 5431W-20-GA.GPJ 1/12/21																
GBE3																

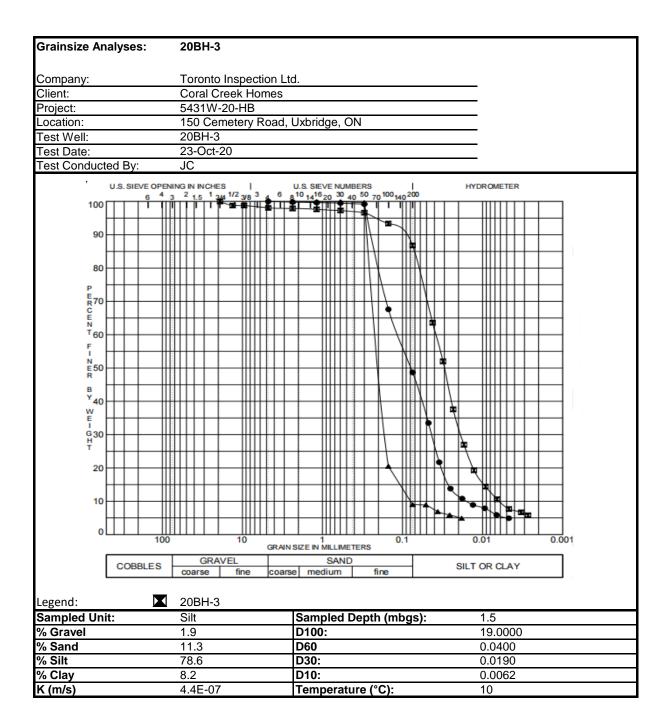
NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEF

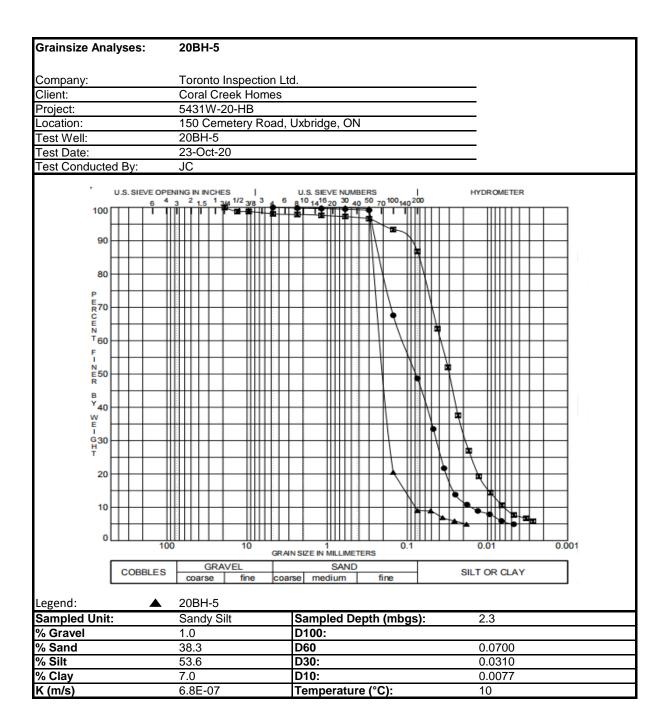
F	DRE USE BY OTHE	ERS	
	Time	Water Level (m)	Depth to Cave (m)
	December 7, 202) Dry	

										D١	wg No. <u>6</u>		
Project:	Geotechnical Investigation		Sheet No. 1 of 1										
_ocation:	150 Cemetery Road, Uxb	oridge, O	ntar	io									
Date Drilled: Drill Type: Datum:	12/4/20 Truck Mounted Drill Rig Geodetic		- SF Dy Sh	ger Sar PT (N) V namic (elby Tu eld Vano	/alue Cone Te ube	est			Natura Plastic Uncon	pace Readi I Moisture and Liquid fined Comp in at Failure ometer	Limit -	× 	
G Y W B	Soil Description	ELEV.	V. H Shear Strength						100 200 300				Natura Unit
- 0 1	und Surface	m 296.30		20 Shear St	trenath	40 00	<u>60 80</u> 20	kPa		erg Limits (%	e Content % % Dry Weight) 30		Weight kN/m3
TOP - 50n	SOIL nm in thickness URBED SOIL	296.25	° N O							*			
bro	wn to greyish brown fine sand ne silt and topsoil	-	۱Ó							×			
wwwver	y loose ist to very moist	-											
SAN	-	294.20		<u>, i i i</u>						^			
- con	npact wn fine sand	-		8+					*				
	ne seams of silt	-	3	ð						×			
		292.30	4		X.								
den	Y SAND use to very dense				\mathbf{A}								
	wn silty fine sand y moist		5		Š	\$		· · · · · · · · · · ·		*			
		_	6				\						
<u> </u>		289.75					75 0			*			
NOT Upor	OF BOREHOLE E: n completion of drilling: ehole open and dry												

NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS
Toronto Inspection Ltd.


LGBE3 5431W-20-GA.GPJ 1/12/21


Time	Water Level (m)	Depth to Cave (m)
December 7, 2020) Drý	



APPENDIX C

Hydraulic Conductivity Analysis

APPENDIX D

Groundwater Quality Certificate of Analysis

CA14049-JAN21 R1

Prepared for

Toronto Inspection Ltd.

First Page

CLIENT DETAILS		LABORATORY DETAILS	
Client	Toronto Inspection Ltd.	Project Specialist	Jill Campbell, B.Sc.,GISAS
		Laboratory	SGS Canada Inc.
Address	110 Konrad Crescent, Unit 16	Address	185 Concession St., Lakefield ON, K0L 2H0
	Markham, ON		
	L3R 9X2. Canada		
Contact	Simran Panesar	Telephone	2165
Telephone	416-996-3214	Facsimile	705-652-6365
Facsimile	905 940 8192	Email	jill.campbell@sgs.com
Email	lab@torontoinspection.com;simran@torontoinspection.com	SGS Reference	CA14049-JAN21
Project		Received	01/05/2021
Order Number		Approved	01/01/1970
Samples	Ground Water (4)	Report Number	CA14049-JAN21 R1
		Date Reported	02/03/2021

COMMENTS

RL - SGS Reporting Limit

Nonylphenol Ethoxylates is the sum of nonylphenol monoethoxylate and nonylphenol diethoxylate.

Total PAH is the sum of anthracene, benzo(a)pyrene, benzo(a)anthracene, benzo(e)pyrene, benzo(b,j)fluoranthene, benzo(k)fluoranthene, benzo(g,h,i)perylene, chrysene, dibenzo(a,h)anthracene, dibenzo(a,i)pyrene, dibenzo(a,j)acridine, 7H-dibenzo(c,g)carbazole, fluoranthene, indeno(1,2,3-c,d)pyrene, perylene, phenanthrene and pyrene.

Temperature of Sample upon Receipt: 4 degrees C Cooling Agent Present:Yes Custody Seal Present:Yes

Chain of Custody Number:019826

SIGNATORIES

The signatories will be applied on the final report.

Jill Campbell, B.Sc., GISAS

Jill Cumpbell

TABLE OF CONTENTS

First Page	1-2
Index	3
Results	4-8
Exceedance Summary	9
QC Summary	10-16
Legend	17
Annexes	18

Client: Toronto Inspection Ltd.

Project:

Project Manager: Simran Panesar

PACKAGE: SANSEW - General Chem	nistry		Sa	mple Number	9	10	11
(WATER)							
			5	Sample Name	20BH-1(MW) Jan	20BH-1(MW) Jan	20BH-1(MW) Jan
					12	15	29
L1 = SANSEW / WATER / Durham Table 1 - Sanitary Sev	wer Discharge - BL_55_201	13	5	Sample Matrix	Ground Water	Ground Water	Ground Water
L2 = SANSEW / WATER / Durham Table 2 - Storm Sewe	er Discharge - BL_55_2013			Sample Date	12/01/2021	15/01/2021	29/01/2021
Parameter	Units	RL	L1	L2	Result	Result	Result
General Chemistry							
Biochemical Oxygen Demand (BOD5)	mg/L	2	300	15		< 4↑	
Biochemical Oxygen Demand (BOD5)	mg/L	2	300	15			4
Total Suspended Solids	mg/L	2	350	15		616	
Total Kjeldahl Nitrogen	as N mg/L	0.5	100	1	2.5		
PACKAGE: SANSEW - Metals and Inc	organics		Sa	mple Number	8		
(WATER)							
			5	Sample Name	20BH-1(MW)		
L1 = SANSEW / WATER / Durham Table 1 - Sanitary Sev	wer Discharge - BL_55_201	13	8	Sample Matrix	Ground Water		
L2 = SANSEW / WATER / Durham Table 2 - Storm Sewe	er Discharge - BL_55_2013			Sample Date	05/01/2021		
Parameter	Units	RL	L1	L2	Result		
Metals and Inorganics							
Sulphate	mg/L	2	1500		5		
Cyanide (total)	mg/L	0.01	2	0.02	< 0.01		
Fluoride	mg/L	0.06	10		< 0.06		
Aluminum (total)	mg/L	0.001	50		10.9		
Antimony (total)	mg/L	0.0009	5		< 0.0009		
Arsenic (total)	mg/L	0.0002	1	0.02	0.0036		
Cadmium (total)	mg/L	0.00000	0.7	0.008	0.000135		
		3		0.000			
Chromium (total)	mg/L	0.00008	2	0.08	0.0210		

Client: Toronto Inspection Ltd.

Project:

Project Manager: Simran Panesar

PACKAGE: SANSEW - Metals and Inorg	anics		Sa	ample Number	8
(WATER)	-				
			:	Sample Name	20BH-1(MW)
L1 = SANSEW / WATER / Durham Table 1 - Sanitary Sewer	Discharge - BL_55_20	113	:	Sample Matrix	Ground Water
L2 = SANSEW / WATER / Durham Table 2 - Storm Sewer Dis	ischarge - BL_55_2013	3		Sample Date	05/01/2021
Parameter	Units	RL	L1	L2	Result
Metals and Inorganics (continued)					
Cobalt (total)	mg/L	0.00000	5		0.00913
		4			
Copper (total)	mg/L	0.0002	3	0.05	0.0236
Lead (total)	mg/L	0.00001	1	0.12	0.0113
Manganese (total)	mg/L	0.00001	5	0.15	0.954
Molybdenum (total)	mg/L	0.00004	5		0.00320
Nickel (total)	mg/L	0.0001	2	0.08	0.0196
Phosphorus (total)	mg/L	0.003	10	0.4	0.613
Selenium (total)	mg/L	0.00004	1	0.02	0.00013
Silver (total)	mg/L	0.00005	5	0.12	< 0.00005
Tin (total)	mg/L	0.00006	5		0.0102
Titanium (total)	mg/L	0.00005	5		0.476
Zinc (total)	mg/L	0.002	2	0.04	0.055

Client: Toronto Inspection Ltd.

Project:

Project Manager: Simran Panesar

PACKAGE: SANSEW - Microbi	iology (WATER)		Sa	ample Number	9	
			:	Sample Name	20BH-1(MW) Jan	
					12	
L1 = SANSEW / WATER / Durham Table 1 - S	Sanitary Sewer Discharge - BL_55_2013	3	;	Sample Matrix	Ground Water	
L2 = SANSEW / WATER / Durham Table 2 - S	Storm Sewer Discharge - BL_55_2013			Sample Date	12/01/2021	
Parameter	Units	RL	L1	L2	Result	
Microbiology						
E. Coli	cfu/100mL	-		200	0	
PACKAGE: SANSEW - Other ((ORP) (WATER)		Sa	ample Number	8	10
,	,		;	Sample Name	20BH-1(MW)	20BH-1(MW) Jan
					. ,	15
L1 = SANSEW / WATER / Durham Table 1 - S	Sanitary Sewer Discharge - BL 55 2013	3	:	Sample Matrix	Ground Water	Ground Water
L2 = SANSEW / WATER / Durham Table 2 - S				Sample Date	05/01/2021	15/01/2021
Parameter	Units	RL	L1	L2	Result	Result
Other (ORP)		—				
	.	0.05				7 07
рН	No unit	0.05	10.5	9		7.37
Mercury (total)	mg/L	0.00001	0.01	0.004	< 0.00001	
			64	ample Number	9	
PACKAGE: SANSEW - Phenol	IS (WATER)			-		
			:	Sample Name	20BH-1(MW) Jan	
				Oomula Matte	12 Crownd Water	
L1 = SANSEW / WATER / Durham Table 1 - S		3	:	Sample Matrix	Ground Water	
L2 = SANSEW / WATER / Durham Table 2 - S				Sample Date	12/01/2021	
Parameter	Units	RL	L1	L2	Result	
Phenols						
4AAP-Phenolics	mg/L	0.002	1	0.008	< 0.002	
L				I		
PACKAGE: SANSEW - VOCs	(WATER)		Sa	ample Number	8	
			:	Sample Name	20BH-1(MW)	
L1 = SANSEW / WATER / Durham Table 1 - S	Sanitary Sewer Discharge - BL 55 2013	3	;	Sample Matrix	Ground Water	
- or wolew / which / - Dumail Table 1 - c	Cantary Dewer Discharge - DL_30_2013	,				

CA14049-JAN21 R1

Client: Toronto Inspection Ltd.

Project:

Project Manager: Simran Panesar

PACKAGE: SANSEW - VOCs (WATER)			Sar	nple Number	8
			s	ample Name	20BH-1(MW)
L1 = SANSEW / WATER / Durham Table 1 - Sanitary Sewer	Discharge - BL_55_201	3	s	ample Matrix	Ground Water
L2 = SANSEW / WATER / Durham Table 2 - Storm Sewer Di	ischarge - BL_55_2013			Sample Date	05/01/2021
Parameter	Units	RL	L1	L2	Result
VOCs					
Chloroform	mg/L	0.0005	0.04	0.002	< 0.0005
1,2-Dichlorobenzene	mg/L	0.0005	0.05	0.0056	< 0.0005
1,4-Dichlorobenzene	mg/L	0.0005	0.08	0.0068	< 0.0005
cis-1,2-Dichloroethene	mg/L	0.0005	4	0.0056	< 0.0005
trans-1,3-Dichloropropene	mg/L	0.0005	0.14	0.0056	< 0.0005
Methylene Chloride	mg/L	0.0005	2	0.0052	< 0.0005
1,1,2,2-Tetrachloroethane	mg/L	0.0005	1.4	0.017	< 0.0005
Tetrachloroethylene (perchloroethylene)	mg/L	0.0005	1	0.0044	< 0.0005
Trichloroethylene	mg/L	0.0005	0.4	0.008	< 0.0005
Methyl ethyl ketone	mg/L	0.02	8		< 0.02
Styrene	mg/L	0.0005	0.2		< 0.0005

Client: Toronto Inspection Ltd.

Project:

Project Manager: Simran Panesar

PACKAGE: SANSEW - VOCs - BTEX	(WATER)		Sar	mple Number	8
			s	ample Name	20BH-1(MW)
L1 = SANSEW / WATER / Durham Table 1 - Sanitary Sew	= SANSEW / WATER / Durham Table 1 - Sanitary Sewer Discharge - BL_55_2013		s	ample Matrix	Ground Water
L2 = SANSEW / WATER / Durham Table 2 - Storm Sewer	r Discharge - BL_55_2013			Sample Date	05/01/2021
Parameter	Units	RL	L1	L2	Result
VOCs - BTEX					
Benzene	mg/L	0.0005	0.01	0.002	< 0.0005
Ethylbenzene	mg/L	0.0005	0.16	0.002	< 0.0005
Toluene	mg/L	0.0005	0.27	0.002	< 0.0005
Xylene (total)	mg/L	0.0005	1.4	0.0044	< 0.0005
m-p-xylene	mg/L	0.0005			< 0.0005
o-xylene	mg/L	0.0005			< 0.0005

EXCEEDANCE SUMMARY

-

				SANSEW / WATER / Durham Table	SANSEW / WATE / Durham Table
				1 - Sanitary Sewer	2 - Storm Sewer
				Discharge -	Discharge -
				BL_55_2013	BL_55_2013
Parameter	Method	Units	Result	L1	L2
BH-1(MW)	SM 3030/EPA 200.8	mg/L	0.954		0.15
Phosphorus	SM 3030/EPA 200.8	mg/L	0.613		0.4
Zinc	SM 3030/EPA 200.8	mg/L	0.055		0.04
3H-1(MW) Jan 12					
Total Kjeldahl Nitrogen	SM 4500-N C/4500-NO3- F	mg/L	2.5		1
3H-1(MW) Jan 15					
Total Suspended Solids	SM 2540D	mg/L	616	350	15

QC SUMMARY

Anions by discrete analyzer

Method: US EPA 375.4 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recover (%	•	Spike Recovery		ery Limits (%)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Sulphate	DIO5006-JAN21	mg/L	2	<2	ND	20	103	80	120	103	75	125
Sulphate	DIO5009-JAN21	mg/L	2	<2	1	20	100	80	120	96	75	125

Biochemical Oxygen Demand

Method: SM 5210 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Dup	licate	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC (%)	Spike Recovery		Recovery Limits (%)			ory Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Biochemical Oxygen Demand (BOD5)	BOD0027-JAN21	mg/L	2	< 2	2	30	82	70	130	NV	70	130
Biochemical Oxygen Demand (BOD5)	BOD0054-JAN21	mg/L	2	< 2	15	30	93	70	130	87	70	130

QC SUMMARY

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-[ENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Cyanide (total)	SKA0055-JAN21	mg/L	0.01	<0.01	ND	10	98	90	110	102	75	125

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD AC		Spike	Recovery Limits (%)		Spike	Recovery Limits (%)	
							Recovery			Recovery		
						(76)	(%)	Low	High	(%)	Low	High
Fluoride	EWL0082-JAN21	mg/L	0.06	<0.06	ND	10	95	90	110	92	75	125

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury (total)	EHG0006-JAN21	mg/L	0.00001	< 0.00001	ND	20	95	80	120	104	70	130

QC SUMMARY

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ма	atrix Spike / Ref	i.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover (%	ry Limits %)	Spike Recovery	Recove	ry Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Silver (total)	EMS0027-JAN21	mg/L	0.00005	<0.00005	ND	20	101	90	110	84	70	130
Aluminum (total)	EMS0027-JAN21	mg/L	0.001	<0.001	3	20	96	90	110	117	70	130
Arsenic (total)	EMS0027-JAN21	mg/L	0.0002	<0.0002	3	20	100	90	110	91	70	130
Cadmium (total)	EMS0027-JAN21	mg/L	0.000003	<0.000003	15	20	100	90	110	93	70	130
Cobalt (total)	EMS0027-JAN21	mg/L	0.000004	<0.000004	4	20	100	90	110	86	70	130
Chromium (total)	EMS0027-JAN21	mg/L	0.00008	<0.00008	13	20	99	90	110	96	70	130
Copper (total)	EMS0027-JAN21	mg/L	0.0002	<0.0002	2	20	101	90	110	110	70	130
Manganese (total)	EMS0027-JAN21	mg/L	0.00001	<0.00001	1	20	100	90	110	97	70	130
Molybdenum (total)	EMS0027-JAN21	mg/L	0.00004	<0.00004	3	20	102	90	110	89	70	130
Nickel (total)	EMS0027-JAN21	mg/L	0.0001	<0.0001	ND	20	103	90	110	82	70	130
Lead (total)	EMS0027-JAN21	mg/L	0.00001	<0.00001	3	20	91	90	110	95	70	130
Phosphorus (total)	EMS0027-JAN21	mg/L	0.003	<0.003	ND	20	100	90	110	NV	70	130
Antimony (total)	EMS0027-JAN21	mg/L	0.0009	<0.0009	ND	20	100	90	110	119	70	130
Selenium (total)	EMS0027-JAN21	mg/L	0.00004	<0.00004	ND	20	94	90	110	93	70	130
Tin (total)	EMS0027-JAN21	mg/L	0.00006	<0.00006	14	20	98	90	110	NV	70	130
Titanium (total)	EMS0027-JAN21	mg/L	0.00005	<0.00005	7	20	97	90	110	NV	70	130
Zinc (total)	EMS0027-JAN21	mg/L	0.002	<0.002	2	20	100	90	110	100	70	130

QC SUMMARY

Microbiology

Method: SM 9222D | Internal ref.: ME-CA-[ENVIMIC-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dupl	icate	LC	S/Spike Blank		M	latrix Spike / Ref	:
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery	Recover	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
E. Coli	BAC9169-JAN21	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							

рΗ

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	latrix Spike / Rei	f.
	Reference			Blank	RPD	AC	Spike		ery Limits (%)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0221-JAN21	No unit	0.05	NA	0		100			NA		

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	•
						(%)	Recovery (%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0114-JAN21	mg/L	0.002	<0.002	ND	10	103	80	120	98	75	125

QC SUMMARY

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Suspended Solids	EWL0219-JAN21	mg/L	2	< 2	8	10	101	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		м	atrix Spike / Ref	r.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen	SKA0110-JAN21	as N mg/L	0.5	<0.5	0	10	102	90	110	97	75	125

QC SUMMARY

Volatile Organics

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	!.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover (%	•	Spike Recovery		ry Limits %)
						(70)	(%)	Low	High	(%)	Low	High
1,1,2,2-Tetrachloroethane	GCM0072-JAN21	mg/L	0.0005	<0.0005	ND	30	101	60	130	104	50	140
1,2-Dichlorobenzene	GCM0072-JAN21	mg/L	0.0005	<0.0005	ND	30	102	60	130	101	50	140
1,4-Dichlorobenzene	GCM0072-JAN21	mg/L	0.0005	<0.0005	ND	30	100	60	130	100	50	140
Benzene	GCM0072-JAN21	mg/L	0.0005	<0.0005	ND	30	103	60	130	101	50	140
Chloroform	GCM0072-JAN21	mg/L	0.0005	<0.0005	ND	30	103	60	130	101	50	140
cis-1,2-Dichloroethene	GCM0072-JAN21	mg/L	0.0005	<0.0005	ND	30	103	60	130	103	50	140
Ethylbenzene	GCM0072-JAN21	mg/L	0.0005	<0.0005	ND	30	102	60	130	98	50	140
m-p-xylene	GCM0072-JAN21	mg/L	0.0005	<0.0005	ND	30	101	60	130	97	50	140
Methyl ethyl ketone	GCM0072-JAN21	mg/L	0.02	<0.02	ND	30	99	50	140	107	50	140
Methylene Chloride	GCM0072-JAN21	mg/L	0.0005	<0.0005	ND	30	105	60	130	103	50	140
o-xylene	GCM0072-JAN21	mg/L	0.0005	<0.0005	ND	30	102	60	130	99	50	140
Styrene	GCM0072-JAN21	mg/L	0.0005	<0.0005	ND	30	101	60	130	100	50	140
Tetrachloroethylene (perchloroethylene)	GCM0072-JAN21	mg/L	0.0005	<0.0005	ND	30	102	60	130	99	50	140
Toluene	GCM0072-JAN21	mg/L	0.0005	<0.0005	ND	30	103	60	130	99	50	140
trans-1,3-Dichloropropene	GCM0072-JAN21	mg/L	0.0005	<0.0005	ND	30	102	60	130	110	50	140
Trichloroethylene	GCM0072-JAN21	mg/L	0.0005	<0.0005	ND	30	102	60	130	98	50	140

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. **Matrix Spike Qualifier**: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- ↑ Reporting limit raised.
- ↓ Reporting limit lowered.
- $\ensuremath{\textbf{NA}}$ The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

orm or be retained on file in	ay appear on this for	Tending and transportation of samples, (2) Submission of samples to SGS is considered authorization for completion of work. Signatures may appear on this form or be retained on fil initiad number of addresses for no additional cost. Fax is available upon request. This document is issued by the Company under its General Conditions of Service accessible at	zation for complete	ered authori	is considerate and the second	es to SGS	of samp	ubmissio cost. Fax	ples. {2} : additional	on of sam es for no	ansportat	ding and tr	to an unlimit	ne by email	ided direction	owledgement that you have been provided directions tat (e.g. shipping documents). (3) Results may be a	ent that you ipping docu	form	submission of samples to SGS is the contract, or in avaltemative	rision #: 1.4 Note: e of Issue: 22 May. 2020
Vollow 8 White Come	×~	(mm/dd/w/)	1 2	-	Date: 10							2	2	A	Signature: (Sigi	5	CULT	17770	Relinquished by (NAME):
k Conv - Client	Pin	(mm/dd/vv)	KIN	-	Date:						100	5	9	Xal	Signature:	Sig)	mon	kinds (Sampled By (NAME):
			ĩ	2	~							1		Si				1	al Instructions	Diservations/comments/Special Instructions
								18	100											12
												1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1								1
																				10
THUT-LHONN																				9
A 1/ -1.0 Init.																				8
5	1																			7
and they	Y										-									6
	9																			J
collecter.	0							-			-									4
Cheman	C																			ω
10 45		<												VIX	1	2.00	+	1 EILIN		2 00000
re &	1	0.00			-	1	1	-			-		-	(IN	2	[.m	21	01/151	(MWV)	1-1-1405-11
	General	Appendix 2: 406/ Screening Levels Sewer Use: Specify pkg: Water Charac		Pesticides Organochlorine or speci	BTEX only	VOCs all incl BTEX	F1-F4 only	PCBs Total	SVOCS all incl PAHs, ABNs, CPs	PAHs only	ICP metals plus B(HWS-s ICP Metals on Sb,As,Ba,Be,B,Cd,Cr,Co,d	Metals & Inor Incl CrVI, CN, Hg pH, (B(H) CI, Na-water) Full Metals St	Field Filtered	MATRIX	# OF BOTTLES	TIME SAMPLED BC	and the second	DATE SAMPLED	TIFICATION	SAMPLE IDENTIFICATION
COMMENTS:		DN		ify othe				2013			oil only) ly	uite					ON	YES	ITE CONDITION (RSC)	RECORD OF SITE
	nded Specify TCLP tests	& Server		, L				Aroclor			A CARLES	Legisland and) .	ipality;	The	Preg serrices (s Lay min (AT)) Prwco MMER (CCME Other: MISA ODWS Not Reportable *See note	Not Repo	PWQ0 CCME ODWS	Agri/Other Medium/Fine	I Table 2 I Indi Table 3 Agri Table 3 Agri Table 3 Agri Soil Volume 350m3
「二」「「二」」「二」」	TCLP	(please specify)	Other	Pest	VOC I	<	PHC	PCB	SVOC	IS		M & I		Sewer By-Law:	Sewer		ilations:	Other Regulations:		g 153/04
		South States and	D	REQUESTED	REQU	SIS F	ANALYSIS	A					2	cum				REGULATIONS	REGL]
*NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED WITH SGS DRINKING WATER CHAIN OF CUSTODY	CONSUMPTION OF CUSTODY	NG WATER CHAIN C	E) WATER SAN TH SGS DRINKI	(POTABL	RINKING	OTE: DI	*N				te:	Specify Due Date	N	rection	handhaning	44	Shonnon for	3 100 100 at 20	ab Q-tonarchinspection, whereait	Email: lab Quant
		MISSION	PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION	ATIVE PR	EPRESENT.	REPR	1 SC	Apply TY WI	ASIBIL	JSH FE	IRM R	PLEASE CONFIRM RUSH FEASIBILITY WITH	PLEAS					Phone:	000	Fax Jus Jus
I ATS are quoted in putsiness days (exclude statutory notidays & weekends). Samples received after 6pm or on weekends: TAT begins next business day	ekends: TAT beg	d after 6pm or on wee	Samples receive]			(s)	(5-7da	lar TAT	Regular TAT (5-7days)						Address:	Montehom	R
		ED	TURNAROUND TIME (TAT) REQUIRED	D TIME (ROUN	TURNA				-	C	~				howard	Sho	Contact:	VOUUS/011	F
		n/ID:	Site Location/ID:						R	51	54	#	Project #:				1	Company:_		Contact: Suntay
			P.O. #									ion #	Quotation #			as Report Information)	as	(same		Company: TW
	S #	LAB LIMS #		R		Type:	1/C	C) No	eceipt	Cooling Agent Present: Yes	mperatu	Cc Te		No No	sent: Yes act: Yes	Custody Seal Present: Custody Seal Intact:	Cu	(2)	(hr : min)	Received Time:
				~	5		y I	use or	- Lab	ection	ntion S	Laboratory Information Section - Lab use only	oratory	Lab	nature	Received By (signatu	Rec		AMACON	Received By:
Page of	P						519-672-0361	x: 519-6	-8060 F	877-848	oll Free:	2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax:	ne: 519-6;	E 2S8 Pho	don, ON MOE	- London: 657 Consortium Court, London,	7 Consortiu	- London: 65		
No: 020483	Z				DY	ISTO	F CL	NN SOS	CH/ Web: v	52-6365	vice:	Y Ser 2-2000 Fa	oratoi ne: 705-65	or Lab	Request for Laboratory Services and CHAIN OF CUSTODY Lakefield, ON KOL 2HO Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment	Rec sion St., Lake	85 Conces	Request for Laboratory Services and CHAIN OF CUSTO - Lakefield: 185 Concession St., Lakefield, ON KOL 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sqs.com/environment	Environment, Health & Safety	SGS

APPENDIX E

Water Balance Analysis

Month	Daily Average (°C)	Heat Index	Potential Evapotranspiration (mm)	Daylight Correction Factor	Adjusted PET (mm)	Total Precipitation (mm)	Surplus (mm)	Deficit (mm)
Jan	-7.00	0.00	0.00	0.80	0.00	64.90	64.90	0.00
Feb	-6.60	0.00	0.00	0.81	0.00	45.90	45.90	0.00
Mar	-1.30	0.00	0.00	1.03	0.00	53.10	53.10	0.00
Apr	5.70	1.22	26.28	1.13	29.57	67.90	38.33	0.00
May	12.20	3.86	59.13	1.27	75.38	82.10	6.72	0.00
Jun	18.00	6.95	89.51	1.29	115.69	106.60	0.00	9.09
Jul	19.90	8.10	99.62	1.31	130.36	86.40	0.00	43.96
Aug	19.30	7.73	96.42	1.21	116.38	73.90	0.00	42.48
Sep	15.10	5.33	74.23	1.05	77.77	87.30	9.53	0.00
Oct	8.60	2.27	40.74	0.94	38.48	74.90	36.42	0.00
Nov	2.40	0.33	10.45	0.80	8.39	83.20	74.81	0.00
Dec	-4.00	0.00	0.00	0.77	0.00	60.00	60.00	0.00
TOTALS		36	496		592	886	390	96

Climate Station ID*: 6119055 UDORA CLIMATE STATION Latitude: 43.862222

Total Differential Surplus (mm):

Assumptions

L (average day length) N (days in the month)

a (Daylight Correction)

¹² ³⁰ ^{1.06591083} *PET (mm)* = 16 $\left(\frac{L}{12}\right)\left(\frac{N}{30}\right)\left(\frac{10T_a}{I}\right)^{\alpha}$

(Thornthwaite, 1948)

294

Table of monthly reduction factor values for different latitudes

				North				So	uth		
Latitude	0	10	20	30	40	50	10	20	30	40	50
Jan	1.04	1	0.95	0.9	0.84	0.74	1.08	1.14	1.2	1.27	1.37
Feb	0.94	0.91	0.9	0.87	0.83	0.78	0.97	1	1.03	1.06	1.12
Mar	1.04	1.03	1.03	1.03	1.03	1.02	1.05	1.05	1.06	1.07	1.08
Apr	1.01	1.03	1.05	1.08	1.11	1.15	0.99	0.97	0.95	0.93	0.89
Мау	1.04	1.08	1.13	1.18	1.24	1.33	1.01	0.96	0.92	0.86	0.77
Jun	1.01	1.06	1.11	1.17	1.25	1.36	0.96	0.91	0.85	0.78	0.67
Jul	1.04	1.08	1.14	1.2	1.27	1.37	1	0.95	0.9	0.84	0.74
Aug	1.04	1.07	1.11	1.14	1.18	1.25	1.01	0.99	0.96	0.92	0.88
Sep	1.01	1.02	1.02	1.03	1.04	1.06	1	1	1	1	0.99
Oct	1.04	1.02	1	0.98	0.96	0.92	1.06	1.08	1.12	1.15	1.19
Nov	1.01	0.98	0.93	0.89	0.83	0.76	1.05	1.09	1.14	1.2	1.29
Dec	1.04	0.99	0.94	0.88	0.81	0.7	1.1	1.15	1.21	1.29	1.41

*Climate Data Source: Environment and Climate Change Canada. 1981 to 2010 Climate Normals Data. Climate Station: UDORA. Climate ID: 6119055. https://climate.weather.gc.ca/climate_normals/

TABLE 2: PRE-DEVELOPMENT WATER BALANCE

Cotchment Designation				
Catchment Designation	S1 - Landscaped Area	S2 - Paved Areas	S3 - Building	Total
Area (m²)	7,902	737	231	8,870
Pervious Area (m²)	7,902	0	0	7,902
mpervious Area (m ²)	0	737	231	968
nfiltration Factors				
Topography Infiltration Factor ¹	0.1	0	0	
Soil Infiltration Factor ²	0.3	0	0	
Land Cover Infiltration Factor ³	0.1	0	0	
MOE Infiltration Factor ⁴	0.5	0.25	0.25	-
Run-Off Factor	0.5	0.75	0.75	
Runoff from Impervious Surfaces*	0.95	0.95	0.95	
Inputs (per Unit Area)				
Precipitation (mm/yr)	886	886	886	886
Run-On (mm/yr)	0	0	0	0
Other Inputs (mm/yr)	0	0	0	0
Total Inputs (mm/yr)	886	886	886	886
Outputs (per Unit Area)				
Precipitation Surplus (mm/yr)	294	842	842	354
Evapotranspiration (mm/yr)	592	44	44	532
Infiltration (mm/yr)	147	74	74	139
Runoff Pervious Areas	147	0	0	131
Runoff Impervious Areas	0	768	768	84
Total Runoff (mm/yr)	147	768	768	215
Total Outputs (mm/yr)	886	886	886	886
Difference (Inputs - Outputs)	0	0	0	0
Inputs (Volumes)				
Precipitation (m ³ /yr)	7,003	653	205	7,861
Run-On (m³/yr)	0	0	0	0
Other Inputs (m³/yr)	0	0	0	0
Total Inputs (m³/yr)	7,003	653	205	7,861
Outputs (Volumes)				
Precipitation Surplus (m ³ /yr)	2,325	620	194	3,139
Evapotranspiration (m ³ /yr)	4,678	33	10	4,721
nfiltration (m³/yr)	1,162	54	17	1,233
Runoff Pervious Areas	1,162	0	0	1,162
Runoff Impervious Areas	0	566	177	744
Total Runoff (m³/yr)	1,162	566	177	1,906
Γotal Outputs (m³/yr)	7,003	653	205	7,861
Difference (Inputs - Outputs)	0	0	0	0

*Evaporation from impervious areas was assumed to be:

5% of precipitation (per civil design)

¹ Measured grade in the pre-construction condition for the Site assumed to have the same infiltration factor as hilly land.

² Overburden at the Site in the pre-construction conditions is mainly sand, silty sand and sandy silt, assumed to have the same infiltration factor between medium combination of clay and loam and open sandy loam.

³ The Site is mainly covered by grass, assumed to have ge same infriltration factor as cultivated land.

⁴ Assumed 25% infiltration in landscaped area following the runoff from building rooftops and paved areas.

5431W-20-HB

TABLE 3: POST-DEVELOPMENT WATER BALANCE WITHOUT MITIGATION

Catchment Designation	S1 - Landscaped Area	S2 - Paved Area	S3 - Building	Total
Area (m²)	4,733	1,826	2,311	8,870
% Change from Pre-Development	-40%	148%	900%	-
Pervious Area (m²)	4,733	0	0	4,733
Impervious Area (m ²)	0	1,826	2,311	4,137
	Infilt	ration Factors		
Topography Infiltration Factor ¹	0.1	0	0	
Soil Infiltration Factor ²	0.3	0	0	
Land Cover Infiltration Factor ³	0.1	0	0	
MOE Infiltration Factor	0.5	0	0	-
Run-Off Factor	0.5	1	1	
Runoff from Impervious Surfaces*	0.95	0.95	0.95	
		(per Unit Area)		
Precipitation (mm/yr)	886	886	886	886
Run-On (mm/yr)	0	0	0	0
Other Inputs (mm/yr)	0	0	0	0
Total Inputs (mm/yr)	886	886	886	886
	Output	s (per Unit Area)		
Precipitation Surplus (mm/yr)	294	842	842	550
Evapotranspiration (mm/yr)	592	44	44	337
Infiltration (mm/yr)	147	0	0	78
Runoff Pervious Areas	147	0	0	78
Runoff Impervious Areas	0	842	842	393
Total Runoff (mm/yr)	147	842	842	471
Total Outputs (mm/yr)	886	886	886	886
Difference (Inputs - Outputs)	0	0	0	0
	Inpu	uts (Volumes)	· · · · · · · · · · · · · · · · · · ·	
Precipitation (m ³ /yr)	4,194	1,618	2,048	7,861
Run-On (m³/yr)	0	0	0	0
Other Inputs (m³/yr)	0	0	0	0
Total Inputs (m³/yr)	4,194	1,618	2,048	7,861
	Outp	outs (Volumes)		
Precipitation Surplus (m ³ /yr)	1,392	1,537	1,946	4,875
Evapotranspiration (m ³ /yr)	2,802	81	102	2,985
Infiltration (m³/yr)	696	0	0	696
Runoff Pervious Areas	696	0	0	696
Runoff Impervious Areas	0	1,537	1,946	3,483
Total Runoff (m³/yr)	696	1,537	1,946	4,179
Total Outputs (m³/yr)	4,194	1,618	2,048	7,861
Difference (Inputs - Outputs)	0	0	0	0

*Evaporation from impervious areas wat of precipitation

5% of precipitation (per civil design)

¹ Per Preliminary Grading Plan (PEL, 2021), topography in the post-construction conditions is hilly.

² Overburden at the Site in the post-construction phase consists of engineered fill and native sand to sandy silt materials. Per Geotechnical Investigation Report (TIL, 2021), the native sand and silt soils may be suitable for re-use for engineered fill. Assume the overburduen in post-constrtion has the same infiltration factor between medium combination of clay and loam and open sandy loam.

³ The area other than the buildings and paved roads will be grassed in the post-construction phase, assumed to have the same infiltratio factor as cultivated land.

5431W-20-HB

TABLE 4: WATER BALANCE SUMMARY

Measurement	Pre-Development	Post-Development	Overall Change (Pre- to Post-) (m ³ /yr)	Percentage Change (Pre- to Post-)
		Inputs (Volumes)		
Precipitation (m ³ /yr)	7,861	7,861	0	0%
Run-On (m³/yr)	0	0	0	0%
Other Inputs (m ³ /yr)	0	0	0	0%
Total Inputs (m³/yr)	7,861	7,861	0	0%
	0	outputs (Volumes)		
Precipitation Surplus (m ³ /yr)	3,139	4,875	1,736	55%
Evapotranspiration (m ³ /yr)	4,721	2,985	-1,736	-37%
Infiltration (m ³ /yr)	1,233	696	-537	-44%
Runoff Pervious Areas	1,162	696	-466	-40%
Runoff Impervious Areas	744	3,483	2,739	368%
Total Runoff (m ³ /yr)	1,906	4,179	2,273	119%
Total Infiltration (m ³ /yr)	1,233	696	-537	-44%
Total Outputs (m ³ /yr)	7,861	7,861	0.0	0%

Effect of Development on Hydrologic Input and Output Characteristics of the Site

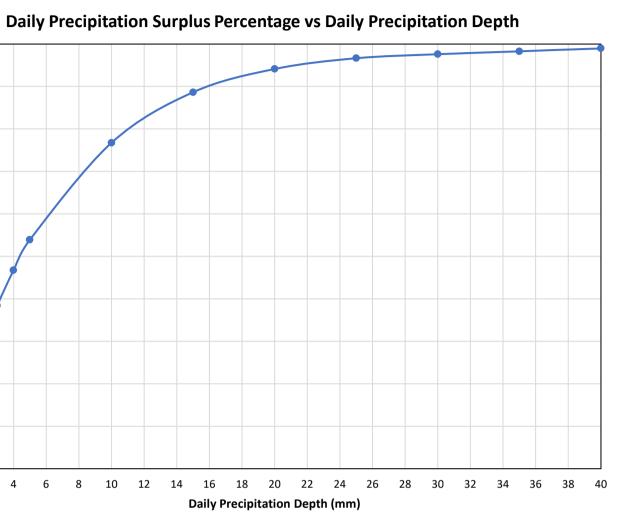
Catagony	Pre-Development	Post-Development
Category	Percentage of Rain	Percentage of Rain
Total Evapotranspiration	60%	38%
Total Runoff	24%	53%
Total Infiltration	16%	9%

Infiltration Deficit

Scenario	Deficit Volume (m ³ /yr)	Supplemental Infiltration from LIDs (m ³ /yr)	% of Deficit Compensated	Deficit Remaining (m ³ /yr)	Futher Mitigation Required? ¹
Without Mitigation	537	NA	0%	537	Yes
With Mitigation	537	2,036	100%	0	No

Notes:

¹ Based on Water Balance Recharge Offsetting Policy (LSRCA, 2023)


Annual Rainfall Depth Required for Supplemental Infiltr	ation		[
Total Site Area =	8,870 m2	From climate based water balance pre- vs post-		Analy
Total Infiltration Deficit Over Total Site Area =	68 mm			
	606 m3			
LID Catchment Area = Required Annual Rainfall Depth in LID Catchment Area to Infiltrate =	2,846 m2 213 mm	Obtained from Table 11 of Functional Servicing & Preliminary Stormwater Management Report (PEI, 2024)	100.00%	
Required Precipitation Depth as Percetage of Annual Precipitation			90.00%	
Annual Rainfall for Site = Annual Precipitation Surplus for Site =	886 mm 529 mm	From Climate Normals for Udora Climate Station (ID 6119055) From Table 3 Post-Development Water Balance	80.00%	
% Annual Precipitation =	213 529 40%		Precipitation Surplus 900.00%	
Therefore, need to capture and retain all precipitation from approx. 40% of ann Required Storage in LID for Infiltration	ual precipitation su	urplus in the LID catchment to meet water balance.	of Annual Total 0,000%	4
Based on Daily Udora Climate Station 2023 Total Precip Data, determine corresp Approx. 40% of all annual surplus is accounted for in events up to = (consider 10% loss to evapotranspiration)	oonding precipitati 3 mm	on surplus depth per event: See chart below.	5 30.00% 20.00% 10.00%	
Find storage volume required for events of 3mm in the LID catchment area LID Catchment Area = Required Storage Volume =	2,846 m2 9 m3	Obtained from Table 11 of Functional Servicing & Preliminary Stormwater Management Report (PEI, 2024)	0.00%	0 2
Provided Storage Volume in Stone Base Stone Depth = - Bottom Area= - Porosity = -	m m2 [-1		ſ	0
Total Effective Storage =	71 m3	Obtained from Table 11 of Functional Servicing & Preliminary Stormwater Management Report (PEI, 2024)		2.0
Depth of Precipitation in LID Catchment for Effective Storage Provided=	25 mm	From Daily Precipitation Data from Udora Station (Chart		4.(
Corresponding Annual Precipitation Surplus Total = % of Annual Precipitation Surplus Infiltrated = Annual Estimated Infiltration Volume =	715.4 mm 135.2%	Below) Relative to Climate Normals for Udora Climate Station		5.0 10.
Summary	2,036 m3			15. 20.
Since the storage volume provided exceeds the storage required for infiltration, annually by LID from the impervious areas of the LID catchment.	the water balance	is satisfied. Approximately 715.4 mm stored and infiltrated	1	25.

Site: 150 Cemetery Road, Uxbridge, ON

ysis By: PG

Date: 31-Jul-24

0	0%
120.8	16%
213.1	29%
284.3	38%
345.9	47%
399.0	54%
568.1	77%
656.2	89%
696.7	94%
715.4	97%
722.5	98%
727.5	98%
732.5	99%
740.2	100%
740.2	100%
740.2	100%
740.2	100%
740.2	100%
740.2	100%
	120.8 213.1 284.3 345.9 399.0 568.1 656.2 696.7 715.4 722.5 727.5 727.5 732.5 732.5 740.2 740.2 740.2 740.2

30.0

35.0 40.0 50.0 60.0 70.0

80.0 90.0 100.0

TABLE 2: PRE-DEVELOPMENT WATER BALANCE - AREA A

	Pre-Development					
Catchment Designation	S1 - Pervious	S2 - Impervious	Total			
Area (m²)	1,730	620	2,350			
Pervious Area (m ²)	1,730	0	1,730			
Impervious Area (m ²)	0	620	620			
Infiltration Factors						
MOE Infiltration Factor	0.5	0.25				
Run-Off Factor	0.5	0.75	-			
Runoff from Impervious Surfaces*	0.95	0.95				
Inputs (per Unit Area)						
Precipitation (mm/yr)	886	886	886			
Run-On (mm/yr)	0	0	0			
Other Inputs (mm/yr)	0	0	0			
Total Inputs (mm/yr)	886	886	886			
Outputs (per Unit Area)						
Precipitation Surplus (mm/yr)	294	842	439			
Evapotranspiration (mm/yr)	592	44	448			
Infiltration (mm/yr)	147	74	128			
Runoff Pervious Areas	147	0	108			
Runoff Impervious Areas	0	768	203			
Total Runoff (mm/yr)	147	768	311			
Total Outputs (mm/yr)	886	886	886			
Difference (Inputs - Outputs)	0	0	0			
Inputs (Volumes)						
Precipitation (m ³ /yr)	1,533	549	2,083			
Run-On (m³/yr)	0	0	0			
Other Inputs (m ³ /yr)	0	0	0			
Total Inputs (m³/yr)	1,533	549	2,083			
Outputs (Volumes)						
Precipitation Surplus (m ³ /yr)	509	522	1,031			
Evapotranspiration (m ³ /yr)	1,024	27	1,052			
Infiltration (m ³ /yr)	254	46	300			
Runoff Pervious Areas	254	0	254			
Runoff Impervious Areas	0	476	476			
Total Runoff (m ³ /yr)	254	476	731			
Total Runoff + Infiltration (m ³ /yr)		-	1,031			
Total Outputs (m ³ /yr)	1,533	549	2,083			
Difference (Inputs - Outputs)	0	0	0			

*Evaporation from impervious areas was assumed to be:

5% of precipitation (per civil design)

¹ Measured grade in the pre-construction condition for the Site assumed to have the same infiltration factor as hilly land.

² Overburden at the Site in the pre-construction conditions is mainly sand, silty sand and sandy silt, assumed to have the same infiltration factor between medium combination of clay and loam and open sandy loam.

³ The Site is mainly covered by grass, assumed to have ge same infriltration factor as cultivated land.

			Post-Development		
Catchment Designation	S1 - Pervious (No LID Contribution)	S2 - Impervious (No LID Contribution)	S3 - LID - Roof Area (Block 1, 5, 6)	S4 - LID - Landscape Runoff (Block 1, 5)	Total
Area (m²)	1,494	300	245	544	2,583
Pervious Area (m ²)	1,494	0	0	544	2,038
Impervious Area (m ²)	0	300	245	0	545
Infiltration Factors					
MOE Infiltration Factor	0.5	0	0	0.5	
Run-Off Factor	0.5	1	1	0.5	-
Runoff from Impervious Surfaces*	0.95	0.95	0.95	0.95	
Inputs (per Unit Area)					
Precipitation (mm/yr)	886	886	886	886	886
Run-On (mm/yr)	0	0	0	0	0
Other Inputs (mm/yr)	0	0	0	0	0
Total Inputs (mm/yr)	886	886	886	886	886
Outputs (per Unit Area)					
Precipitation Surplus (mm/yr)	294	842	842	294	410
Evapotranspiration (mm/yr)	592	44	44	592	476
Infiltration (mm/yr)	147	0	0	147	116
Infiltration from LIDs (mm/yr)	0	0	715	147	99
Total Infiltration (mm/yr)	147	0	715	294	215
Runoff Pervious Areas	147	0	0	0	85
Runoff Impervious Areas	0	842	127	0	110
Total Runoff (mm/yr)	147	842	127	0	195
Total Outputs (mm/yr)	886	886	886	886	886
Difference (Inputs - Outputs)	0	0	0	0	0
Inputs (Volumes)	<u>.</u>				
Precipitation (m ³ /yr)	1,324	266	217	482	2,289
Run-On (m ³ /yr)	0	0	0	0	0
Other Inputs (m³/yr)	0	0	0	0	0
Total Inputs (m ³ /yr)	1,324	266	217	482	2,289
Outputs (Volumes)	<u>.</u>				
Precipitation Surplus (m ³ /yr)	439	253	206	160	1,058
Evapotranspiration (m ³ /yr)	884	13	11	322	1,231
Infiltration (m ³ /yr)	220	0	0	80	300
Infiltration from LIDs (m ³ /yr)	0	0	175	80	255
Total Infiltration (m ³ /yr)	220	0	175	160	555
Runoff Pervious Areas	220	0	0	0	220
Runoff Impervious Areas	0	253	31	0	284
Total Runoff (m ³ /yr)	220	253	31	0	504
Total Runoff + Infiltration (m ³ /yr)	_				1,058
Total Outputs (m ³ /yr)	1,324	266	217	482	2,289
Difference (Inputs - Outputs)		0	0	0	0

*Evaporation from impervious areas was assumed to be:

5% of precipitation (per civil design)

¹ Per Preliminary Grading Plan (PEL, 2021), topography in the post-construction conditions is hilly.

² Overburden at the Site in the pre-construction conditions is mainly sand, silty sand and sandy silt, assumed to have the same infiltration factor between medium combination of clay and loam and open sandy loam.

³ The area other than the buildings and paved roads will be grassed in the post-construction phase, assumed to have the same infiltratio factor as cultivated land.

5431W-20-HB

Soakaway Pits - Stormwater Captured by Roof Area of B	lock 1, 5, 6	
		Obtained from Table 11 of Functional Servicing &
LID Catchment Area =	489 m2	Preliminary Stormwater Management Report (PEI, 2024)
		Obtained from Table 11 of Functional Servicing &
Total Effective Storage =	6 m3	Preliminary Stormwater Management Report (PEI, 2024)
Depth of Precipitation in LID Catchment for Effective Storage Provided=	25 mm	
		From Daily Precipitation Data from Udora Station (Chart
Corresponding Annual Precipitation Surplus Total =	715.4 mm	Below)
Annual Estimated Infiltration Volume =	350 m3	
Infiltration Trenches - Direct Landscape Drainage (Block	1, 5)	
		Obtained from Table 11 of Functional Servicing &
LID Catchment Area =	544 m2	Preliminary Stormwater Management Report (PEI, 2024)
		Obtained from Table 11 of Functional Servicing &
Total Effective Storage =	14 m3	Preliminary Stormwater Management Report (PEI, 2024)
Depth of Precipitation in LID Catchment for Effective Storage Provided=	25 mm	
		From Daily Precipitation Data from Udora Station (Chart
Corresponding Annual Precipitation Surplus Total =	715.4 mm	Below)
Annual Estimated Infiltration Volume =	389 m3	

0	0%
120.8	16%
213.1	29%
284.3	38%
345.9	47%
399.0	54%
568.1	77%
656.2	89%
696.7	94%
715.4	97%
722.5	98%
727.5	98%
732.5	99%
740.2	100%
740.2	100%
740.2	100%
740.2	100%
740.2	100%
740.2	100%

APPENDIX F

Phosphorus Balance Analysis

Project DEVELOPMENT Summary

DEVELOPMENT: Residential Subdivision 150 Cemetery Road, Uxbridge, ON Subwatershed: Pefferlaw-Uxbridge Brook

0

Total Pre-Development Area (ha): 0.8870		70	Total Pre-Development Phosphorus Load (kg/yr):	0.12
Pre-Development Land Use	Area (ha)	P coeff. (kg/ha)	P Lo (kg	
Low Intensity Development	0.887	0.13		0.12

POST-DEVELOPMENT LOAD

Post-Development Land Use	Area (ha)	P coeff. (kg/ha)	Best Management Practice applied with P Removal Efficiency		P Load (kg/yr)
High Intensity - Residential	0.887	1.32	NONE	0%	6 1.17

High density residential subdivision - without mitigation

Post-Development Area Altered:0.89Total Pre-Development Area:0.89

Unaffected Area:

Post-Development:1.17Change (Pre - Post):-1.06

915% Net Increase in Load

P Load

(kg/yr)

0.12

Post-Development (with BMPs): 1.17

Pre-Development:

Change (Pre - Post): -1.06

915.38% Net Increase in Load

Phosphorus Offsetting Fee Calculation

Site: 150 Cemetery Road, Uxbridge, ON Date: July 30, 2024

Pre-Development Loading		0.12 kg/year (P Tool Estimate)
Post-Development Loading with Mititgation		0.74 kg/year (PEI, 2024 ¹)
Calculation of Phosphorus Offsetting Fee (LSRCA Phosphorus Offsettin	ng Policy, May	2023)
Total Phosphorus Load Increase (Post-Treament - Pre-Treatment)		0.62 kg/year
Offset Ratio		2.5
Offset Value		35,770.00 \$/kg/year
Phosphorus Offset Calculation	\$	55,443.50
15% Administration Fee	\$	8,316.53
Total Offsetting Fee	\$	63,760.03

Note: ¹ Data obtained from Table 12 of Functional Servicing & Preliminary Stormwater Management Report (PEI, 2024)

APPENDIX G

Water Well Records

TOWNSHIP CON LOT	υтм	DATE CNTR	CASING	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
UXBRIDGE TOWN	17 649653 4883715 W	2007/07 7215	2		///:	MN		7052036 (Z63051) A055284	
UXBRIDGE TOWN	17 649637 4883883 W	2007/12 6607	2.31	FR		МТ		7101756 (M00752) A062351	BRWN SAND SILT 0005 BRWN SAND SILT 0019 GREY SAND 0020
UXBRIDGE TOWN	17 649715 4884203 W	2009/04 6370		FR 0010		NU		7123913 (Z48973) A043801	BRWN SAND SAND 0026
UXBRIDGE TOWN	17 649733 4884271 W	2008/02 5459	0.79		///:			7103266 (Z75648) A063131 A	
UXBRIDGE TOWN	17 649577 4883675 W	2008/10 6607						7115824 (M03954) A062351 A	
UXBRIDGE TOWN	17 649606 4883875 W	2008/03 6607	2.00			тн		7105650 (Z60543) A059249	BRWN MSND SILT DNSE 0020 GREY MSND DNSE 0027
UXBRIDGE TOWN	17 649276 4883726 W	2008/06 6809	22			МО		7111145 (M02929) A073759	BRWN LOAM 0000 GREY FSND SLTY 0020 GREY SAND WBRG 0030 GREY SILT TILL 0032 GREY SILT SAND FGRD 0038 GREY SILT TILL 0042
UXBRIDGE TOWN 001	17 649508 4884255 W	2007/08 6170	6.21		20/25/4/1:0	DO		7050048 (Z72383) A045672	
UXBRIDGE TOWNSHIP (U	17 649582 4883611 W	2015/10 7241	2			МТ	0008 10	7253397 (Z217842) A179476	BRWN SAND ROCK LOOS 0008 BRWN SAND LOOS 0014 GREY SILT SAND WBRG 0018
UXBRIDGE TOWNSHIP (U	17 649587 4883699 W	2015/10 7241	2			МТ	0008 10	7253396 (Z217841) A188685	BRWN SAND ROCK LOOS 0008 BRWN SAND LOOS 0014 GREY SILT SAND WBRG 0018
UXBRIDGE TOWNSHIP (U	17 649594 4883708 W	2015/10 7241	2			MT	0008 10	7253395 (Z217840) A186411	BRWN SAND ROCK LOOS 0008 BRWN SAND LOOS 0014 GREY SILT SAND WBRG 0018
UXBRIDGE TOWNSHIP (U	17 649730 4884191 W	2013/11 7383	2	0023		МО	0018 10	7214687 (Z166149) A151272	

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
UXBRIDGE TOWNSHIP (U	17 649673 4883881 W	2012/12 5459						7195860 (Z159493) A	
UXBRIDGE TOWNSHIP (U	17 649704 4884197 W	2013/11 7383	2			МО	0018 10	7214688 (Z166147) A151275	
UXBRIDGE TOWNSHIP (U	17 649590 4883718 W	2015/02 7247	2	UT 0012		МТ	0010 10	7249703 (Z208465) A174069	BRWN GRVL FILL 0005 BRWN CLAY FILL GRVL 0007 BRWN SAND SLTY LOOS 0020
UXBRIDGE TOWNSHIP (U	17 649643 4883714 W	2015/04 7523	2			МО		7240446 (Z201053) A174069 A	
UXBRIDGE TOWNSHIP (U	17 649693 4884234 W	2013/11 7383	2			мо мо	0018 10	7214689 (Z166148) A151144	
UXBRIDGE TOWNSHIP (U	17 649673 4884237 W	2013/11 7383	2	0018			0017 10	7219037 (Z185300) A151226	BLCK 0000 BRWN SAND 0027
UXBRIDGE TOWNSHIP (U	17 649592 4883863 W	2020/09 7241	2		///:	МТ	0015 10	7375336 (Z347602) A302405	BLCK 0000 BRWN FILL 0002 BRWN SAND SILT 0025
UXBRIDGE TOWNSHIP (U	17 649618 4883858 W	2020/09 7241	2		///:	МТ	0015 10	7375335 (Z347601) A302406	BLCK 0000 BRWN FILL 0002 BRWN SAND SILT 0025
UXBRIDGE TOWNSHIP (U	17 649415 4883830 W	2019/11 6988						7355983 (C45803) A276619 P	
UXBRIDGE TOWNSHIP (U 06 029	17 649705 4884041 W	2007/10 5459	6		///:			7052120 (Z61039) A064976 A	
UXBRIDGE TOWNSHIP (U CON 05 027	17 648923 4883641 W	1966/09 3414	6	FR 0141	///:	DO			CLAY SILT 0035 CLAY BLDR 0090 CLAY 0135 GRVL 0141
UXBRIDGE TOWNSHIP (U CON 06 026	17 649407 4883639 W	2010/11 7247	2	UT 0011		МО	0008 5	7157160 (Z109741) A110459	BRWN SILT SAND LOOS 0007 BRWN FSND PCKD 0013

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
UXBRIDGE TOWNSHIP (U CON 06 026	17 649520 4883606 W	1974/04 1413	5	FR 0058	18/23/9/2:0	DO	0050 8	4605834 ()	BLCK LOAM 0003 BRWN SAND 0033 BRWN FSND 0044 RED SAND 0058
UXBRIDGE TOWNSHIP (U CON 06 026	17 649485 4883527 W	2021/11 7732	1.97	UT 0016	///:		0007 10	7406256 (PX2P3N7U) _NO_TAG A	
UXBRIDGE TOWNSHIP (U CON 06 026	17 649145 4883393 W	1971/05 1413	5	FR 0083	15/77/9/2:3	DO	0075 8	4604739 ()	BRWN MSND 0015 BRWN CLAY MSND 0046 BRWN SILT CLAY MSND 0074 RED FSND 0083
UXBRIDGE TOWNSHIP (U CON 06 026	17 649615 4883773 W	1980/07 4743	6	FR 0042 FR	12/28/20/3:	со	0044 12	1905749 ()	YLLW SAND CLAY LOAM 0030 BRWN SAND CLAY 0042 BRWN FSND 0056 BRWN CLAY SAND 0068 GREY CLAY STNS HPAN 0070
UXBRIDGE TOWNSHIP (U CON 06 026	17 649715 4883773 W	1980/11 4743	65	FR 0044 FR	15/43/8/3:0	со	0044 4	1905922 ()	WHIT SAND CLAY 0016 BRWN CLAY SAND 0030 BRWN SAND 0048 BRWN SAND CLAY LYRD 0063
UXBRIDGE TOWNSHIP (U CON 06 026	17 649600 4883706 W	2015/03 7147	1.25	FR 0010			0005 10	7238869 (Z203275) A175800	GREY BRWN SAND
UXBRIDGE TOWNSHIP (U CON 06 026	17 649142 4883383 W	2016/08 5459	6	FR 0085	18/64/5/1:	DO	0075 10	7273158 (Z225691) A088236	BRWN SAND SILT SOFT 0040 GREY FSND SILT SOFT 0085
UXBRIDGE TOWNSHIP (U CON 06 026	17 649461 4883467 W	1975/11 1413	5	FR 0085	28/60/9/2:0	ST DO	0076 8	4606378 ()	RED SAND 0030 BRWN SAND SILT 0078 GREY FSND 0085
UXBRIDGE TOWNSHIP (U CON 06 026	17 649742 4883791 W	1982/05 4743	65	FR 0014	10/44/5/2:3	со	0040 4	1906401 ()	SAND CLAY LOOS 0014 BRWN SAND LOOS 0044 GREY CLAY SILT 0054
UXBRIDGE TOWNSHIP (U CON 06 026	17 649465 4883423 W	1977/09 4743	6	UK 0055	15/35/15/2:	IN DO	0057 8	1904819 ()	YLLW SAND FILL 0004 BRWN SAND GRVL LOOS 0020 BRWN SAND CLAY DRTY 0055 GREY SAND CLN 0065
UXBRIDGE TOWNSHIP (U CON 06 027	17 649335 4883805 W	2018/09 5459						7319945 (Z265460) A	
UXBRIDGE TOWNSHIP (U CON 06 027	17 649309 4883520 W	1961/08 3414	4	SA 0105	40///:	DO		4602987 ()	LOAM 0001 CLAY MSND 0047 SILT 0105 GREY CLAY GRVL 0380 BLCK SHLE 0450

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
UXBRIDGE TOWNSHIP (U CON 06 027	17 649265 4884023 W	1982/04 1413	6	FR 0090	47/76/5/3:0	DO	0082 8	1906343 ()	BRWN SAND DRY 0014 BRWN CLAY PCKD 0048 BRWN FSND 0081 BRWN SAND LOOS 0090
UXBRIDGE TOWNSHIP (U CON 06 027	17 649706 4883868 W	2017/08 7241	2			ТН МО	0010 10	7295901 (Z268108) A217557	BLCK 0003 BRWN SAND GRVL 0020
UXBRIDGE TOWNSHIP (U CON 06 027	17 649669 4883988 W	2017/08 7241	2			ТН МО	0017 10	7295900 (Z268105) A233903	BLCK 0003 BRWN SAND 0027
UXBRIDGE TOWNSHIP (U CON 06 027	17 649735 4883951 W	2017/08 7241	2			ТН МО	0010 10	7295899 (Z268109) A233972	BLCK 0003 BRWN SAND 0020
UXBRIDGE TOWNSHIP (U CON 06 027	17 649733 4883943 W	2017/08 7241	2			ТН МО	0010 10	7295898 (Z268110) A208702	BLCK 0003 BRWN SAND 0020
UXBRIDGE TOWNSHIP (U CON 06 027	17 649739 4883944 W	2017/08 7241	2			ТН МО	0007 10	7295897 (Z268111) A221813	BLCK 0003 BRWN SAND 0017
UXBRIDGE TOWNSHIP (U CON 06 027	17 649622 4883908 W	2017/08 7241	2			ТН МО	0017 10	7295903 (Z268106) A208827	BLCK 0003 BRWN SAND 0027
UXBRIDGE TOWNSHIP (U CON 06 027	17 649647 4883897 W	2017/08 7241	2			ТН МО	0015 10	7295902 (Z268107) A233912	BLCK 0003 BRWN SAND 0025
UXBRIDGE TOWNSHIP (U CON 06 027	17 649643 4883915 W	1974/04 1413	5	FR 0054	17/23/12/1	DO	0046 8	4605940 ()	BLCK LOAM 0002 BRWN SAND 0039 RED SAND 0054
UXBRIDGE TOWNSHIP (U CON 06 027	17 649615 4883923 W	1980/09 4743	65	FR 0042	21/30/20/2	со	0042 11	1905867 ()	YLLW SAND CLAY 0020 BRWN SAND PCKD 0042 BRWN FSND 0053 BLUE CLAY SILT SOFT 0065 GREY CLAY 0066
UXBRIDGE TOWNSHIP (U CON 06 027	17 649272 4883831 W	2020/12 7615	2	UT 0040	///:	MO	0030 10	7378540 (Z340568) A288372	BRWN FILL SAND SOFT 0003 BRWN SAND CLAY DNSE 0025 GREY SAND CLAY HARD 0040
UXBRIDGE TOWNSHIP (U CON 06 027	17 649311 4883833 W	2020/12 7615	2		///:	МО	0010 10	7378541 (Z340569) A288371	BRWN FILL SAND SOFT 0003 BRWN SAND SILT DNSE 0020

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
UXBRIDGE TOWNSHIP (U CON 06 027	17 649415 4883923 W	1977/06 4743	6	FR 0055	17/42/20/2	DO	0058 12	1904795 ()	BRWN SAND FILL 0008 BRWN SAND LOOS 0016 BRWN GRVL SAND 0019 BRWN SAND DRY 0055 BRWN SAND PCKD 0062 GREY FSND 0070
UXBRIDGE TOWNSHIP (U CON 06 027	17 649497 4883905 W	1991/05 3903	66	FR 0316	25/113/6/8	со	0308 8	1911176 (104177)	BRWN FSND LOOS 0006 BRWN CLAY STNS HARD 0012 BRWN FSND LYRD 0069 BRWN GRVL CLAY LYRD 0071 BRWN GRVL CLAY LYRD 0074 BRWN FSND LOOS 0085 GREY CLAY SAND LYRD 0106
UXBRIDGE TOWNSHIP (U CON 06 027	17 649196 4884062 W	2006/06 7108	6.05 5	FR 0069	19/63/9/4:	DO	0070 5	1918312 (Z49462) A044296	BLCK LOAM SAND SOFT 0001 BRWN SAND CLAY 0010 BRWN CLAY STNS 0035 GREY CLAY SOFT 0065 BRWN SAND PCKD 0075
UXBRIDGE TOWNSHIP (U CON 06 027	17 649681 4883794 W	1985/12 1672	6	FR 0055	18/49/5/2:0	DO	0048 4	1907599 ()	LOAM 0001 SAND GRVL 0014 CLAY 0036 SAND FGVL 0055
UXBRIDGE TOWNSHIP (U CON 06 027	17 649715 4883823 W	1983/10 1413	5	FR 0059	15/50/4/1:3	IN	0055 4	1906752 ()	BRWN SAND PCKD 0008 GREY SAND PCKD 0050 BRWN MSND LOOS 0059
UXBRIDGE TOWNSHIP (U CON 06 027	17 649615 4884023 W	1980/07 4743	65	FR 0032 FR	17/24/25/6	со	0032 16	1905747 ()	WHIT SAND CLAY LYRD 0018 BRWN CLAY SAND 0032 BRWN FSND 0040 GREY FSND 0048 GREY CLAY SAND DRTY 0061 GREY CLAY 0065
UXBRIDGE TOWNSHIP (U CON 06 027	17 649399 4883929 W	1986/10 0001	65	FR 0072	45/60/10/2	DO	0073 4	1907940 (NA)	BRWN SAND 0004 BLCK BLDR HARD 0007 BRWN SAND LOOS 0072 GREY SAND FSND 0078 GREY SAND CLAY MUCK 0081
UXBRIDGE TOWNSHIP (U CON 06 027	17 649199 4884074 W	2006/06 7108	5					1918313 (Z49463) A044297 A	
UXBRIDGE TOWNSHIP (U CON 06 027	17 649373 4883824 W	1987/07 4743	6	FR 0058	35/60/6/2:3	DO	0065 4	1908514 (06475)	BRWN SAND LOOS 0042 BRWN SAND LOOS 0048 BRWN SAND WBRG PCKD 0058 BRWN SAND CLN 0069
UXBRIDGE TOWNSHIP (U CON 06 027	17 649622 4883776 W	1985/10 1413	5	FR 0045	10/30/6/1:3	DO	0041 4	1907511 ()	BRWN SAND SILT LOOS 0036 GREY CLAY SILT SOFT 0037 RED SAND LOOS 0045
UXBRIDGE TOWNSHIP (U CON 06 027	17 649265 4883773 W	1985/04 1413	5	FR 0050	15/42/4/2:0	DO	0046 4	1907292 ()	BRWN SAND LOOS 0010 BRWN CLAY SAND SOFT 0018 BRWN GRVL SAND LOOS 0020 BRWN CLAY SOFT 0035 BRWN FSND 0050
UXBRIDGE TOWNSHIP (U CON 06 027	17 649379 4883816 W	1986/07 4743	655	FR 0046	21/55/6/2:3	DO	0046 8	1907891 (NA)	YLLW CLAY SAND 0016 BRWN SAND LOOS 0046 BRWN SAND DKCL 0050 BLUE CLAY 0055 GREY SAND FSND 0059 GREY SILT CLAY 0064

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
UXBRIDGE TOWNSHIP (U CON 06 028	17 648897 4884153 W	2020/09 1413	6.25 12.2	FR 0141 UT	//100/1:	DO		7376725 (Z329960) A301855	BRWN SAND CLAY PCKD 0010 BRWN CLAY HARD 0025 GREY CLAY SILT SOFT 0070 BRWN SAND SILT SOFT 0078 GREY CLAY STNS HARD 0125 BRWN SAND MSND CLN 0136 BRWN GRVL CGVL CLN
UXBRIDGE TOWNSHIP (U CON 06 028	17 649574 4884319 W	2011/07 1413	6.25	FR 0087	28/65/40/1	DO	0084 3	7170061 (Z128142) A108387	BRWN SAND LOOS 0027 BRWN FSND SILT 0075 BRWN FSND CLN 0087
UXBRIDGE TOWNSHIP (U CON 06 028	17 649252 4884210 W	1989/03 4743	6	FR 0081	18//5/2:0	DO	0081 5	1909796 (54744)	BRWN LOAM WIHD 0002 BRWN SAND LOOS 0039 GREY CLAY GRVL HARD 0054 BRWN SAND SOFT 0056 GREY CLAY GRVL HARD 0081 BLCK SAND HARD 0087
UXBRIDGE TOWNSHIP (U CON 06 028	17 649515 4884283 W	1976/01 1413	6	FR 0091	26/60/10/2	DO	0083 8	4606427 ()	BRWN SAND CLAY SILT 0077 RED FSND LOOS 0091
UXBRIDGE TOWNSHIP (U CON 06 028	17 648858 4884095 W	1974/08 1413	5	FR 0065	24/45/10/2	DO	0056 8	4605929 ()	BRWN SAND CLAY 0052 RED FSND 0065
UXBRIDGE TOWNSHIP (U CON 06 028	17 649351 4884199 W	1994/11 5459	6	FR 0126	50/120/2/2	DO	0129 6	1912216 (141549)	BRWN SAND 0030 BRWN CLAY SOFT 0047 GREY CLAY SILT 0062 GREY CLAY SAND HARD 0118 GREY CLAY HARD 0126 GREY SAND SILT 0135
UXBRIDGE TOWNSHIP (U CON 06 028	17 649565 4884373 W	1978/09 4743	6	FR 0063	16/56/7/1:3	DO	0066 4	1905135 ()	YLLW SAND CLAY PCKD 0012 BRWN CLAY SAND 0045 BLUE CLAY 0063 BRWN FSND CLN 0070
UXBRIDGE TOWNSHIP (U CON 06 028	17 648903 4884058 W	2016/06 7108	6.05 5	FR 0036	6/37/6/1:30	DO IR	0037 4	7268912 (Z232668) A189238	BLCK LOAM 0001 BRWN SAND CLAY SOFT 0020 GREY CLAY STNS SOFT 0036 BRWN SAND GRVL LOOS 0041
UXBRIDGE TOWNSHIP (U CON 06 028	17 649602 4884303 W	1967/11 3102	30	FR 0015	15//2/:	DO		4602990 ()	LOAM 0001 MSND 0025
UXBRIDGE TOWNSHIP (U CON 06 028	17 649215 4884033 W	1972/08 1413	5	FR 0065	20/50/10/1	DO	0050 8	4605196 ()	PRDR 0024 BLUE SAND 0055 RED SAND 0057 BLCK FSND 0065
UXBRIDGE TOWNSHIP (U CON 06 028	17 649415 4884173 W	1984/05 1413	6	FR 0052	15/33/8/1:3	DO	0045 7	1906959 ()	BRWN SAND PCKD 0012 BRWN CLAY DNSE 0043 BRWN SAND LOOS 0052
UXBRIDGE TOWNSHIP (U CON 06 028	17 649465 4884373 W	1984/08 4743	6	FR 0045	14/33/7/2:3	DO	0049 4	1907210 ()	BRWN CLAY SAND LOOS 0012 BRWN SAND 0045 BRWN SAND CLN 0053

MECP WATER WELL RECORDS WITHIN 500M OF SITE

TOWNSHIP CON LOT	IIITM	DATE CNTR	CASING	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
UXBRIDGE TOWNSHIP (U CON 06 028	17 649565 4884173 W	1980/10 2407	6	FR 0074	25/64/9/2:0	DO	0074 3	1905951 0	BLUE LOAM 0001 BLUE CLAY SAND 0032 BLUE CLAY 0074 BLUE SAND 0077
UXBRIDGE TOWNSHIP (U CON 06 028	17 649365 4884373 W	1968/10 1413	5	FR 0066	18/25/9/2:0	DO	0058 8	4603924 ()	MSND 0018 CLAY MSND 0052 MSND 0066
UXBRIDGE TOWNSHIP (U CON 06 029	17 649735 4884259 W	2004/05 7154	6.21 0.27	FR 0080 UK	0090 FR 02	MN	0080 10	(206854)	BRWN MSND 0089 GREY MSND 0105 GREY CLAY SLTY STNS 0212 GREY CLAY STNS SLTY 0300
UXBRIDGE TOWNSHIP (U CON 06 029	17 649605 4883900 W	1996/04 1413	6			со		1912825 (166554) A	

Notes:

UTM: UTM in Zone, Easting, Northing and Datum is NAD83; L: UTM estimated from Centroid of Lot; W: UTM not from Lot Centroid DATE CNTR: Date Work Completed and Well Contractor Licence Number CASING DIA: .Casing diameter in inches WATER: Unit of Depth in Feet. See Table 4 for Meaning of Code PUMP TEST: Static Water Level in Feet / Water Level After Pumping in Feet / Pump Test Rate in GPM / Pump Test Duration in Hour : Minutes WELL USE: See Table 3 for Meaning of Code SCREEN: Screen Depth and Length in feet WELL: WEL (AUDIT #) Well Tag. A : Abandonment; P: Partial Data Entry Only FORMATION: See Table 1 and 2 for Meaning of Code

Table 1. Core Material and Descri

Description
BOULDERS
BASALT
COARSE-GRAINED
COARSE GRAVEL
CHERT
CLAY
CLEAN
CLAYEY
CEMENTED
CONGLOMERATE
CRYSTALLINE
COARSE SAND
DARK-COLOURED
DOLOMITE
DENSE
DIRTY
DRY
FRACTURED
FINE-GRAINED
FINE GRAVEL
FILL
FELDSPAR
FLINT
FOSILIFEROUS
GNEISS
GRANITE

Code	Description
GRSN	GREENSTONE
GRVL	GRAVEL
GRWK	GREYWACKE
GVLY	GRAVELLY
GYPS	GYPSUM
HARD	HARD
HPAN	HARDPAN
IRFM	IRON FORMATION
LIMY	LIMY
LMSN	LIMESTONE
LOAM	TOPSOIL
LOOS	LOOSE
LTCL	LIGHT-COLOURED
LYRD	LAYERED
MARL	MARL
MGRD	MEDIUM-GRAINED
MGVL	MEDIUM GRAVEL
MRBL	MARBLE
MSND	MEDIUM SAND
MUCK	MUCK
OBDN	OVERBURDEN
PCKD	PACKED
PEAT	PEAT
PGVL	PEA GRAVEL
PORS	POROUS
PRDG	PREVIOUSLY DUG

Code	Description
PRDR	PREV. DRILLED
QRTZ	QUARTZITE
QTZ	QUARTZ
ROCK	ROCK
SAND	SAND
SHLE	SHALE
SHLY	SHALY
SHRP	SHARP
SHST	SCHIST
SILT	SILT
SLTE	SLATE
SLTY	SILTY
SNDS	SANDSTONE
SNDY	SANDYSOAPSTONE
SOFT	SOFT
SPST	SOAPSTONE
STKY	STICKY
STNS	STONES
STNY	STONEY
THIK	THICK
THIN	THIN
TILL	TILL
UNKN	UNKNOWN
VERY	VERY
WBRG	WATER-BEARING
WDFR	WOOD

Code	Description
WTHD	WEATHERED

Notes (Cont'd):

Table 2. Core Colour		
Code	Description	
WHIT	WHITE	
GREY	GREY	
BLUE	BLUE	
GREN	GREEN	
YLLW	YELLOW	
BRWN	BROWN	
RED	RED	
BLCK	BLACK	
BLGY	BLUE-GREY	

Table 3. Well Use	
Code	Description
DO	Domestic
ST	Livestock
IR	Irrigation
IN	Industrial
CO	Commercial
MN	Municipal
PS	Public
AC	Cooling and A/C
NU	Not Used
OT	Other
TH	Test Hole
DE	Dewatering
MO	Monitoring
MT	Monitoring TestHole

Table 4. Water Detail

Tuble 4. Water Detail		
Code	Description	
FR	Fresh	
SA	Salty	
SU	Sulphur	
MN	Mineral	
Uk	Unknown	
GS	Gas	
IR	Iron	